Skip to main content

Optical and Electronic Processes in Semiconductor Materials for Device Applications

  • Chapter
  • First Online:
Excitonic and Photonic Processes in Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 203))

Abstract

In this chapter we consider the important optical and electronic processes which influence the properties of semiconductor photonic devices. Focussing on a number of material systems, we describe semiconductor materials and structures used for light-emitting applications (lasers and LEDs) operating in a wide spectral range from visible to mid-infrared. The main carrier recombination mechanisms in semiconductor devices are discussed and experimental methodologies for measuring and analysing these mechanisms are introduced. Near infra-red (IR) quantum well (QW) lasers are discussed in depth considering several new approaches to overcome fundamental performance issues. Different approaches for the longer wavelength (mid-IR) semiconductor devices are reviewed showing the benefits of different approaches to material and device design where energy efficiency and high temperature operation are the principal concerns. Finally, semiconductor lasers and LEDs for the visible spectral range are briefly introduced in terms of the most important issues related to their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Piprek, Unified model for the GaN LED efficiency droop. Proc. SPIE 7939, 793916 (2011)

    Google Scholar 

  2. S.J. Sweeney, Novel experimental techniques for semiconductor laser characterisation and optimisation. Phys. Scr. 152 (2004). doi:10.1088/0031-8949/2004/T114/038

  3. A.F. Phillips, S.J. Sweeney, A.R. Adams, P.J.A. Thijs, The temperature dependence of 1.3- and 1.5-\(\mu \)m compressively strained InGaAs(P) MQW semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 5(3), 401 (1999)

    Google Scholar 

  4. A.R. Adams, M. Silver, J. Allam, High Pressure in Semiconductor Physics II, Semiconductors and Semimetals, vol. 55 (Academic Press, London, 1998)

    Google Scholar 

  5. A.R. Adams, Properties of Gallium Arsenide, 2nd edn. IEE EMIS. Datareviews Series No. 2 (INSPEC, London, 1990), p. 119

    Google Scholar 

  6. S.H. Wei, A. Zunger, Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: chemical trends. Phys. Rev. B 60, 5404 (1999)

    Article  ADS  Google Scholar 

  7. A. Rogalski, Z. Orman, Band-to-band recombination in InAs1-xSbx. Infrared Phys. 25, 551–560 (1985)

    Article  ADS  Google Scholar 

  8. B.J. Gunney et al., High pressure photoconductivity techniques and their application to semiconductor alloy systems. High Press. Res. Ind. 2, 481 (1982)

    Google Scholar 

  9. S.R. Jin, S.J. Sweeney, S. Tomic’, A.R. Adams, H. Riechert, Unusual increase of the Auger recombination current in 1.3 \(\mu \)m GaInNAs quantum-well lasers under high pressure. Appl. Phys. Lett. 82, 2335 (2003)

    Article  ADS  Google Scholar 

  10. A.R. Adams, Strained layer quantum well lasers. IEEE J. Sel. Top. Quantum Electron. 17(5), 1364 (2011)

    Google Scholar 

  11. E.J. Flynn, Carrier-density-independent radiative constant in 1.3 \(\mu \)m buried heterostructure lasers. J. Appl. Phys. 78, 4046 (1995)

    Article  ADS  Google Scholar 

  12. S.J. Sweeney, A.R. Adams, M. Silver, E.P. O’Reilly, J.R. Watling, A.B. Walker, P.J.A. Thijs, Dependence of threshold current on QW position and on pressure in 1.5 \(\mu \)m InGaAs(P) lasers. Phys. Status Solidi B 211, 525 (1999)

    Google Scholar 

  13. S.J. Sweeney, D. McConville, N.F. Masse, R.-X. Bouyssou, A.R. Adams, C.N. Ahmad, C. Hanke, Temperature and pressure dependence of recombination processes in 1.5 \(\mu \)m InGaAlAs/InP-based quantum well lasers. Phys. Status Solidi B 241(14), 3391 (2004)

    Google Scholar 

  14. S.A. Sayid, I.P. Marko, P.J. Cannard, X. Chen, L.J. Rivers, I.F. Lealman, S.J. Sweeney, Thermal characteristics of 1.55-\(\mu \)m InGaAlAs quantum well buried heterostructure lasers. IEEE J. Quant. Electron 46(5), 700 (2010)

    Google Scholar 

  15. S.J. Sweeney, T. Higashi, A. Andreev, A.R. Adams, T. Uchida, T. Fujii, Superior temperature performance of 1.3\(\mu \)m AlGaInAs-based semiconductor lasers investigated at high pressure and low temperature. Phys. Status Solidi B 223, 573 (2001)

    Google Scholar 

  16. S.R. Jin, S.J. Sweeney, C.N. Ahmad, A.R. Adams, B.N. Murdin, Radiative and Auger recombination in 1.3\(\upmu \)m InGaAsP and 1.5\(\mu \)m InGaAs quantum-well lasers measured under high pressure at low and room temperatures. Appl. Phys. Lett. 85, 357 (2004). doi:10.1063/1.1772871

  17. W. Shan, W. Walukiewicz, J.W. Ager, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, Band anticrossing in GaInNA’s alloys. Phys. Rev. Lett. 82, 1221–1224 (1999)

    Article  ADS  Google Scholar 

  18. B.N. Murdin, A.R. Adams, P. Murzyn, C.R. Pidgeon, I.V. Bradley, J.-P.R. Wells, Y.H. Matsuda, N. Miura, T. Burke, A.D. Johnson, Band anticrossing in dilute InNSb. Appl. Phys. Lett. 81, 256–258 (2002)

    Article  ADS  Google Scholar 

  19. S. Tomic’, E.P. O’Reilly, R. Fehse, S.J. Sweeney, A.R. Adams, A.D. Andreev, S.A. Choulis, T.J.C. Hosea, H. Riechert, Theoretical and experimental analysis of 1.3-\(\mu \)m InGaAsN/GaAs lasers. IEEE J. Sel. Top. Quantum Electron. 9(5), 1228 (2003)

    Google Scholar 

  20. C.A. Broderick, M. Usman, S.J. Sweeney, E.P. O’Reilly, Band engineering in dilute nitride and bismide semiconductor lasers. Semicond. Sci. Technol. 27, 094011 (2012)

    Article  ADS  Google Scholar 

  21. S.R. Jin, S.J. Sweeney, S. Tomic’, A.R. Adams, H. Riechert, High-pressure studies of recombination mechanisms in 1.3-\(\mu \)m GaInNAs quantum-well lasers. IEEE J. Sel. Top. Quantum Electron. 9(5), 1196 (2003)

    Google Scholar 

  22. R. Fehse, S. Tomic, A.R. Adams, S.J. Sweeney, E.P. O’Reilly, A. Andreev, H. Riechert, A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-\(\mu \)m GaInNAs-based quantum-well lasers. IEEE J. Sel. Top. Quantum Electron. 8(4), 801 (2002)

    Google Scholar 

  23. R. Fehse, Recombination processes in GaInNAs/GaAs semiconductor quantum well lasers. Department of Physics, University of Surrey, June 2003

    Google Scholar 

  24. Y. Arakawa, H. Sakaki, Multidimensional quantum-well laser and temperature dependence of its threshold current. Appl. Phys. Lett, 40(11), 939 (1982)

    Google Scholar 

  25. N.N. Ledentsov, V.A. Shchukin, M. Grundmann, N. Kirstaedter, J. Böhrer, O. Schmidt, D. Bimberg, V.M. Ustinov, A.Y. Egorov, A.E. Zhukov, P.S. Kop’ev, S.V. Zaitsev, N.Y. Gordeev, Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth. Phys. Rev. B 54, 8743 (1996)

    Google Scholar 

  26. R. Fehse, I. Marko, A.R. Adams, Long wavelength lasers on GaAs substrates. IEEE Proc. Circ. Devices Syst. 150, 521 (2003)

    Google Scholar 

  27. I.P. Marko, A.R. Adams, S.J. Sweeney, I.R. Sellers, D.J. Mowbray, M.S. Skolnick, H.Y. Liu, K.M. Groom, Recombination and loss mechanism in low-threshold InAs/GaAs 1.3 \(\mu \)m quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 11(5), 1041 (2005)

    Google Scholar 

  28. I.P. Marko, N.F. Massé, S.J. Sweeney, A.D. Andreev, A.R. Adams, N. Hatori, M. Sugawara, Carrier transport and recombination in p-doped and intrinsic 1.3 \(\mu \)m InAs/GaAs quantum-dot lasers. Appl. Phys. Lett. 87(21), 211114 (2005)

    Google Scholar 

  29. M. Ishida, M. Matsuda, Y. Tanaka, K. Takada, M. Ekawa, T. Yamamoto, T. Kageyama, M. Yamaguchi, K. Nishi, M. Sugawara, Y. Arakawa, Temperature-stable 25-Gbps direct-modulation in 1.3-\(\mu \)m InAs/GaAs quantum dot lasers. CLEO Technical Digest OSA 2012, CM1I.2

    Google Scholar 

  30. M.V. Maximov, V.M. Ustinov, A.E. Zhukov, N.V. Kryzhanovskaya, A.S. Payusov, I.I. Novikov, N.Y. Gordeev, Y.M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, A 1.33 \(\mu \)m InAs/GaAs quantum dot laser with a 46 cm? 1 modal gain. Semicond. Sci. Technol. 23, 105004 (2008)

    Google Scholar 

  31. C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, J.P. Reithmaier, High gain 1.55\(\mu \)m diode lasers based on InAs quantum dot like active regions. Appl. Phys. Lett. 98, 201102 (2011). doi:10.1063/1.3590727

  32. I.P. Marko, A.D. Andreev, A.R. Adams, R. Krebs, J.P. Reithmaier, A. Forchel, The role of Auger recombination in InAs 1.3 \(\mu \)m quantum dot lasers investigated using high hydrostatic pressure. IEEE J. Sel. Top. Quantum Electron. 9(5), 1300 (2003)

    Google Scholar 

  33. L.V. Asryan, R.A. Suris, Temperature dependence of the threshold current density of a quantum dot laser. IEEE J. Quantum Electron 34(5), 841 (1998)

    Google Scholar 

  34. M. Grundmann, O. Stier, S. Bognar, C. Ribbat, F. Heinrichsdorff, D. Bimberg, Optical properties of self-organized quantum dots: modeling and experiments. Phys. Status Solidi A 178, 255 (2000)

    Google Scholar 

  35. D.R. Matthews, H.D. Summers, P.M. Smowton, M. Hopkinson, Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers. Appl. Phys. Lett. 81(6), 4904 (2002)

    Article  ADS  Google Scholar 

  36. O.B. Shchekin, G. Park, D.L. Huffaker, D.G. Deppe, Discrete energy level separation and the threshold temperature dependence of quantum dot lasers. Appl. Phys. Lett. 77, 466 (2000)

    Article  ADS  Google Scholar 

  37. I.P. Marko, A.R. Adams, S.J. Sweeney, N.F. Masse, R. Krebs, J.P. Reithmaier, A. Forchel, D.J. Mowbray, M.S. Skolnick, H.Y. Liu, K.M. Groom, N. Hatori, M. Sugawara, Band gap dependence of the recombination processes in InAs/GaAs quantum dots studied using hydrostatic pressure. Phys. Status Solidi B 244(1), 82 (2007)

    Google Scholar 

  38. M.T. Crowley, I.P. Marko, N.F. Masse, A.D. Andreev, S. Tomic, S.J. Sweeney, E.P. O’Reilly, A.R. Adams, The importance of recombination via excited states in InAs/GaAs 1.3 \(\mu \)m quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 15(3), 799–807 (2009)

    Article  Google Scholar 

  39. N.F. Masse, E. Homeyer, I.P. Marko, A.R. Adams, S.J. Sweeney, O. Dehaese, R. Piron, F. Grillot, S. Loualiche, Temperature and pressure dependence of the recombination processes in 1.5\(\mu \)m InAs/InP (311)B quantum dot lasers. Appl. Phys. Lett. 91(13), 131113 (2007)

    Google Scholar 

  40. S.A. Sayid, I.P. Marko, S.J. Sweeney, P. Barrios, P.J. Poole, Efficiency limiting processes in 1.55\(\mu \)m InAs/InP-based quantum dots lasers. Appl. Phys. Lett. 97, 161104 (2010). doi:10.1063/1.3504253

  41. I.P. Marko, A.D. Andreev, S.J. Sweeney, A.R. Adams, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, Recombination mechanisms in InAs/InP quantum dash lasers studied using high hydrostatic pressure. Phys. Status Solidi B 241(14), 3427–3431 (2004)

    Article  ADS  Google Scholar 

  42. K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S.P. Watkins, C.X. Wang, X. Liu, Y.-J. Cho, J. Furdyna, Valence-band anticrossing in mismatched III-V semiconductor alloys. Phys. Rev. B 75, 045203 (2007)

    Article  ADS  Google Scholar 

  43. Z. Batool, K. Hild, T.J.C. Hosea, X.F. Lu, T. Tiedje, S.J. Sweeney, The electronic band structure of GaBiAs/GaAs layers: Influence of strain and band anti-crossing. J. Appl. Phys. 111, 113108 (2012)

    Google Scholar 

  44. J.P. Petropoulos, Y. Zhong, J.M.O. Zide, Optical and electrical characterization of InGaBiAs for use as a new mid-infrared optoelectronic material. Appl. Phys. Lett. 99, 031110 (2011)

    Google Scholar 

  45. K. Alberi, O.D. Dubon, W. Walukiewicz, K.M. Yu, K. Bertulis, A. Krotkus, Valence band anticrossing in GaBixAs1–x. Appl. Phys. Lett. 91, 051909 (2007)

    Article  ADS  Google Scholar 

  46. Y. Zhang, A. Mascarenhas, L.W. Wang, Similar and dissimilar aspects of III-V semiconductors containing Bi versus N. Phys. Rev. B 71, 155201 (2005)

    Article  ADS  Google Scholar 

  47. K. O’Brien, S.J. Sweeney, A.R. Adams, B.N. Murdin, A. Salhi, Y. Rouillard, A. Joullie, Recombination processes in midinfrared InGaAsSb diode lasers emitting at 2.37 \({\mu }m\). Appl. Phys. Lett. 89, 051104 (2006)

    Article  ADS  Google Scholar 

  48. S.J. Sweeney, Patent WO 2010/149978 (2010)

    Google Scholar 

  49. S.J. Sweeney, SPIE Photonics West 2010, paper [7616-11] (2010)

    Google Scholar 

  50. K.J. Cheetham et al., Direct evidence for suppression of Auger recombination in GaInAsSbP/InAs mid-infrared light-emitting diodes. Appl. Phys. Lett. 99, 141110 (2011)

    Article  ADS  Google Scholar 

  51. S.J. Sweeney, S.R. Jin, J. Appl. Phys. 113, 043110 (2013). doi:10.1063/1.4789624

    Article  ADS  Google Scholar 

  52. N. Hossain, I.P. Marko, S.R. Jin, K. Hild, S.J. Sweeney, R.B. Lewis, D.A. Beaton, T. Tiedje, Recombination mechanisms and band alignment of GaAs1–xBix/GaAs light emitting diodes. Appl. Phys. Lett. 100, 051105 (2012)

    Article  ADS  Google Scholar 

  53. P. Ludewig, N. Knaub, W. Stolz, K. Volz, MOVPE growth of Ga(AsBi)/GaAs multi quantum well structures. J. Cryst. Growth 370, 186 (2013)

    Article  ADS  Google Scholar 

  54. P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I.P. Marko, S.R. Jin, K. Hild, S. Chatterjee, W. Stolz, S.J. Sweeney, K. Volz, Appl. Phys. Lett. 102, 242115 (2013)

    Article  ADS  Google Scholar 

  55. S. Sweeney et al., Appl. Phys. Lett. (2013) (Submitted)

    Google Scholar 

  56. K. O’Brien, S.J. Sweeney, A.R. Adams, S.R. Jin, C.N. Ahmad, B.N. Murdin, A. Salhi, Y. Rouillard, A. Joullié, Carrier recombination mechanisms in mid-infrared GaInAsSb quantum well lasers. Phys. Status Solidi B 244(1), 203–207 (2007). doi:10.1002/pssb.200672573

  57. K. O’Brien, S.J. Sweeney, A.R. Adams, B.N. Murdin, A. Salhi, Y. Rouillard, A. Joullié, Recombination processes in midinfraredInGaAsSb diode lasers emitting at 2.37 \(\mu \)m. Appl. Phys. Lett. 89, 051104 (2006)

    Article  ADS  Google Scholar 

  58. B.A. Ikyo, I.P. Marko, K. Hild, A.R. Adams, S. Arafin, M.-C.Amann, S.S. Sweeney, Effect of hole leakage and Auger recombination on the temperature sensitivity of GaInAsSb/GaSb mid-infrared lasers. CLEO/Europe-IQEC 2013, Munich, May 2013, CB-10.6 THU. J. Appl. Phys. (2013) (Submitted)

    Google Scholar 

  59. A. Krier, M. Yin, V. Smirnov, P. Batty, P.J. Carrington, V. Solovev, V. Sherstnev, The development of room temperature LEDs and lasers for the mid-infrared spectral range. Phys. Status Solidi A 205, 129 (2008)

    Google Scholar 

  60. K.J. Cheetham, A. Krier, I.P. Marko, A. Aldukhayel, S.J. Sweeney, Direct evidence for suppression of Auger recombination in GaInAsSbP/InAs mid-infrared light-emitting diodes. Appl. Phys. Lett. 99, 141110 (2011). doi:10.1063/1.3646910

    Article  ADS  Google Scholar 

  61. S.A. Choulis, A. Andreev, M. Merrick, A.R. Adams, B.N. Murdin, A. Krier, V.V. Sherstnev, High-pressure measurements of mid-infrared electroluminescence from InAs light-emitting diodes at 3.3 \(\mu \)m. Appl. Phys. Lett. 82, 1149 (2003)

    Google Scholar 

  62. O. Cathabard, R. Teissier, J. Devenson, J.C. Moreno, A.N. Baranov, Quantum cascade lasers emitting near 2.6 \(\mu \)m. Appl. Phys. Lett. 96, 141110 (2010)

    Article  ADS  Google Scholar 

  63. S.R. Jin, C.N. Ahmad, S.J. Sweeney, A.R. Adams, B.N. Murdin, H. Page, X. Marcadet, C. Sirtori, S. Tomić, Appl. Phys. Lett. 89, 221105 (2006)

    Google Scholar 

  64. I.P. Marko, A.R. Adams, S.J. Sweeney, R. Teissier, A.N. Baranov, S. Tomić, Evidence of carrier leakage into the L-valley in InAs-based quantum cascade lasers under high hydrostatic pressure. Phys. Status Solidi B 246(3), 512–515 (2009)

    Article  ADS  Google Scholar 

  65. A. Aldukhayel, S.R. Jin, I.P. Marko, S.Y. Zhang, D.G. Revin, J.W. Cockburn, S.J. Sweeney, Investigations of carrier scattering into L-valley in \(\lambda \)=3.5 \(\mu \)m InGaAs/AlAs(Sb) quantum cascade lasers using high hydrostatic pressure. Phys. Status Solidi B 250(4), 693–697 (2013)

    Article  ADS  Google Scholar 

  66. I.P. Marko, A.M. Aldukhayel, A.R. Adams, S.J. Sweeney, R. Teissier, A.N. Baranov, S. Tomić, Physical properties of short wavelength 2.6\(\mu \)m InAs/AlSb-based quantum cascade lasers, in IEEE Conference DigestIEEE International Semiconductor Laser Conference, pp. 95–96 (2010)

    Google Scholar 

  67. I. Vurgaftman, W.W. Bewley, C.L. Canedy, C.S. Kim, M. Kim, C.D. Merritt, J. Abell, J.R. Lindle, J.R. Meyer, Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption. Nat. Commun. 2, 585 (2011). doi:10.1038/ncomms1595

    Article  ADS  Google Scholar 

  68. K. O’Brien, S.J. Sweeney, A.R. Adams, S.R. Jin, C.N. Ahmad, B.N. Murdin, C.L. Canedy, I. Vurgaftman, J.R. Meyer, High pressure studies of mid-infrared type-II “W” diode lasers at cryogenic temperatures. Phys. Status Solidi B 244(1), 224–228 (2007)

    Article  ADS  Google Scholar 

  69. B.A. Ikyo, I.P. Marko, A.R. Adams, S.J. Sweeney, C.L. Canedy, I. Vurgaftman, C.S. Kim, M. Kim, W.W. Bewley, J.R. Meyer, Temperature dependence of 4.1\(\mu \)m mid-infrared type II “w” interband cascade lasers. Appl. Phys. Lett. 99, 021102 (2011)

    Google Scholar 

  70. Z.L. Bushell et al. (in preparation)

    Google Scholar 

  71. S.J. Sweeney, G. Knowles, T.E. Sale, A.R. Adams, Quantifying the effect of indirect carrier leakage on visible Al(GaInP) lasers using high pressures and low temperatures. Phys. Status Solidi B 223(2), 567–572 (2001)

    Article  ADS  Google Scholar 

  72. S.J. Sweeney, G. Knowles, T.E. Sale, Evaluating the continuous-wave performance of AlGaInP-based red (667nm) vertical-cavity surface-emitting lasers using low-temperature and highpressure techniques. Appl. Phys. Lett. 78, 865 (2001). doi:10.1063/1.1342049

    Article  ADS  Google Scholar 

  73. G. Knowles, S.J. Sweeney, T. Sale, Influence of leakage and gain-cavity alignment on the performance of AI(GalnP) visible vertical-cavity surface emitting lasers. IEE Proc-Optoelectron. 148, 55–59 (2001)

    Article  Google Scholar 

  74. J.K. Kim, E.F. Schubert, Transcending the replacement paradigm of solid-state lighting. Opt. Express 16, 21835–21842 (2008)

    Article  ADS  Google Scholar 

  75. H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91, 183507 (2007)

    Google Scholar 

  76. J. Piprek, Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A 207, 2217–2225 (2010)

    Article  ADS  Google Scholar 

  77. B.G. Crutchley, I.P. Marko, J. Pal, M.A. Migliorato, S.J. Sweeney, Optical properties of InGaN-based LEDs investigated using high hydrostatic pressure dependent techniques. Phys. Status Solidi B 250(4), 698–702 (2013). doi:10.1002/pssb.201200514

  78. B.G. Crutchley et al. The temperature and pressure dependence of efficiency droop in blue-green InGaN LEDs (2013) (in preparation)

    Google Scholar 

  79. G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, E. Zanoni, Efficiency droop in InGaN/GaN blue light-emitting diodes: physical mechanisms and remedies. J. Appl. Phys. 114, 071101 (2013). doi:10.1063/1.4816434

    Article  ADS  Google Scholar 

  80. I. Gorczyca, T. Suski, A. Kamińska, G. Staszczak, H.P.D. Schenk, N.E. Christensen, A. Svane, In-clustering effects in InAlN and InGaN revealed by high pressure studies. Phys. Status Solidi A 207, 1369–1371 (2010)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate the input of various researchers at the University of Surrey over many years to this activity. In particular, we acknowledge Professor Alf Adams, FRS, for his pioneering activities in developing several of the characterisation techniques discussed here. We also gratefully appreciate the funding that has made this work possible, obtained principally from the Engineering and Physical Sciences Research Council (EPSRC), UK, the Technology Strategy Board (TSB), UK, the European Union Framework programmes and the large number of companies and university groups with whom it has been a pleasure to collaborate with.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Sweeney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Marko, I.P., Sweeney, S.J. (2015). Optical and Electronic Processes in Semiconductor Materials for Device Applications. In: Singh, J., Williams, R. (eds) Excitonic and Photonic Processes in Materials. Springer Series in Materials Science, vol 203. Springer, Singapore. https://doi.org/10.1007/978-981-287-131-2_9

Download citation

Publish with us

Policies and ethics