Skip to main content

Electronic Properties of Noncrystalline Semiconductors

  • Chapter
  • First Online:
Excitonic and Photonic Processes in Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 203))

  • 1570 Accesses

Abstract

The electronic properties of inorganic noncrystalline semiconductors are reviewed in this chapter using the effective mass approach in the real coordinate space. It is shown that many properties that can be studied through the effective mass approximation applied in the reciprocal lattice vector k-space in crystalline semiconductors can be studied in noncrystalline semiconductors in the real coordinate r-space. The effective masses of electrons and holes are derived in their respective extended and tail states within the real coordinate space. The mechanism of the double sign reversal leading to the anomalous Hall effect observed in hydrogenated amorphous silicon (a-Si:H) has been successfully explained using the theory of effective mass. It is demonstrated that excitons can also be formed in noncrystalline semiconductors and the energy difference between the singlet and triplet exciton energies is larger than in crystalline semiconductors. The application of the new time-dependent exciton-spin-orbit-photon interaction derived recently by the author has been reviewed for harvesting the radiative emission from triplet excitons, where the traditional perturbation approach cannot be applied very successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, Hoboken, 2004)

    Google Scholar 

  2. J. Ziman, Principles of the Theory of Solids, 2nd edn. (Cambridge University Press, Cambridge, 1972)

    Book  Google Scholar 

  3. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, West Washington Square, 1976)

    Google Scholar 

  4. P.A. Taylor, A Quantum Approach to Solid State Physics (Prentice Hall, Englewood Cliffs, 1971)

    Google Scholar 

  5. L.E. Lyons, F. Gutman, Organic Semiconductors (Wiley, Sydney, 1967)

    Google Scholar 

  6. A.S. Davydov, Theory of Molecular Excitons (McGraw-Hill, New York, 1962)

    Google Scholar 

  7. D.P. Craig, S.H. Walmsley, Excitons in Molecular Crystals (Benjamin, New York, 1968)

    Google Scholar 

  8. C.K. Chang, C.R. Fincher Jr, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977)

    Google Scholar 

  9. C.W. Tang, Appl. Phys. Lett. 48, 183 (1986)

    Article  ADS  Google Scholar 

  10. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995)

    Article  ADS  Google Scholar 

  11. Yong Cao, Ian D. Parker, Yu. Gang, Chi Zhang, Alan J. Heeger, Nature 397, 414 (1999)

    Article  ADS  Google Scholar 

  12. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Nature 347, 539 (1990)

    Google Scholar 

  13. J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes, Nature 376, 498 (1995); also see the review by A.C. Morteani, R.H. Friend, C. Siva, in Organic Light Emitting Devices: mSynthesis, Properties and Applications, ed. by K. Mullen, U. Scherf (Wiley-VCH, Weinheim, 2006) and references therein

    Google Scholar 

  14. N.F. Mott, E.A. Davis, R.A. Street, Philos. Mag. 32, 961 (1975)

    Article  ADS  Google Scholar 

  15. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979) and references therein

    Google Scholar 

  16. J. Singh, K. Shimakawa, Advances in Amorphous Semiconductors (Taylor & Francis, London, 2003)

    Book  Google Scholar 

  17. E.A. Davis, Personal communication, Prof.Davis presented a historical account of the conference “ International Conference on Amorphous and Microcrystalline Semiconductors (ICAMS)” at ICAMS 20, held in Campos do Jordão, Brazil in 2003. The first conference was held in 1965 in Prague, Czechoslovakia under the title, “International Conference on Amorphous and Liquid Semiconductors (ICALS 1)” and Professor John Ziman was an invited participant

    Google Scholar 

  18. S. Ambros, R. Carius, H. Wagner, J. Non, Cryst. Solids 137–138, 555 (1991)

    Article  Google Scholar 

  19. J. Singh, T. Aoki, K. Shimakawa, Philos. Mag. B 82, 855 (2002)

    Article  ADS  Google Scholar 

  20. A. Madan, J. Non-Cryst. Solids 352, 881 (2006)

    Google Scholar 

  21. P.G. LeComber, W.E. Spear, Phys. Rev. Lett. 25, 509 (1970)

    Article  ADS  Google Scholar 

  22. H.F. Stirling, R.C.G. Swan, Solid-State Electron. 8, 653 (1965)

    Article  ADS  Google Scholar 

  23. R.C. Chittick, J.H. Alexander, H.F. Stirling, J. Electrochem. Soc. Solid State Sci. 116, 77 (1969)

    Google Scholar 

  24. W.E. Spear, P.G. LeComber, Solid State Commun. 17, 1193 (1975)

    Article  ADS  Google Scholar 

  25. S. Hagedus, Prog. Photovoltaics 14, 393 (2006)

    Article  Google Scholar 

  26. A. Slaoui, R.T. Collins, MRS Bull. 32, 211 (2007)

    Article  Google Scholar 

  27. K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda, Prog. Photovoltaics 11, 225 (2003)

    Google Scholar 

  28. T. Aramoto, S. Kumazawa, H. Higuchi, T. Arita, S. Shibutani, T. Nishio, J. Nakajima, M. Tsuji, A. Hanafusa, T. Hibino, K. Omura, H. Ohyama, M. Murozono, Jpn. J. Appl. Phys. 36, 6304 (1997)

    Article  ADS  Google Scholar 

  29. R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Brédas, M. Lögdlund, W.R. Salaneck, Nature 397, 121 (1999)

    Google Scholar 

  30. M. Grätzel, Nature 414, 338 (2001)

    Article  ADS  Google Scholar 

  31. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, J. Am. Chem. Soc. 115, 6382 (1993)

    Article  Google Scholar 

  32. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425 (2007)

    Article  ADS  Google Scholar 

  33. D.J. Milliron, I. Gur, A.P. Alivisatos, MRS Bull. 30, 41 (2005)

    Google Scholar 

  34. B. Kippelen, J.-L.Bredas, Energy Env. Sci. 2, 251 (2009) and ref therein

    Google Scholar 

  35. Y. Toyozawa, Prog. Theor. Phys. 26, 29 (1959); in Polarons and Excitons ed. by C.G. Kuper, G.D. Whitfield (Oliver and Boyd, Edinburgh, 1963)

    Google Scholar 

  36. S. Kivelson, C.D. Gelatt Jr, Phys. Rev. B 19, 5160 (1979)

    Article  ADS  Google Scholar 

  37. J. Singh, Excitation Energy Transfer Processes in Condensed Matter (Plenum, New York, 1994)

    Book  Google Scholar 

  38. J. Singh, J. Mater. Sci. Mater. Electron. 14, 171 (2003)

    Google Scholar 

  39. S. Kivelson, C.D. Gelatt Jr, Phys. Rev. B 19, 5160 (1979)

    Article  ADS  Google Scholar 

  40. K. Morigaki, Physics of Amorphous Semiconductors (World-Scientific-Imperial College Press, London, 1999)

    Book  Google Scholar 

  41. R. Callaerts, M. Denayer, F.H. Hashimi, P. Nagels, Discuss. Faraday Soc. 50, 27 (1970)

    Google Scholar 

  42. P. Nagels, R. Callaerts, F.H. Hashimiand, M. Denayer, Phys. Status Solidi 41, K39 (1970)

    Article  ADS  Google Scholar 

  43. E. Mytilineou, E.A. Davis, Edinburgh, p. 632 (1977)

    Google Scholar 

  44. P.G. LeComber, D.J. Jones, W.E. Spear, Philos. Mag. 35, 1173 (1977)

    Article  ADS  Google Scholar 

  45. L. Friedman, T. Holstein, Ann. Phys. 21, 494 (1963)

    Article  ADS  Google Scholar 

  46. L. Friedman, J. Non-Cryst. Solids 6, 329 (1971)

    Article  ADS  Google Scholar 

  47. D. Emin, Philos. Mag. 35, 1189 (1977) in Proceedings of 7th International Conference on Amorphous and Liquid Semiconductors, ed. by W.E. Spear (CICL, Edinburgh, 1977), p. 249

    Google Scholar 

  48. N.F. Mott, Philos. Mag. B 63, 3 (1991)

    Article  ADS  Google Scholar 

  49. H. Okamoto, K. Hattori, Y. Hamakawa, J. Non-Cryst. Solids 164–166, 445 (1993)

    Article  Google Scholar 

  50. W.E. Spear, G. Willeke, P.G. LeComber, Phys. B 117–118, 909 (1983)

    Google Scholar 

  51. W.E. Spear, G. Willeke, P.G. LeComber, A.G. Fitzgerald, J. Phys. Paris 42, C4–257 (1981)

    Google Scholar 

  52. T. Aoki, in Materials for Information Technology in the New Millennium, ed. by J.M. Marshall et al. Proceedings of International Summer School in Condensed Matter Physics, Varna (Bath, 2001), pp. 58–65

    Google Scholar 

  53. T. Aoki, in Optical Properties of Condensed Matter and Applications, Chapter 5, ed. by J. Singh (John Wiley, Chichester, 2006), p. 99

    Google Scholar 

  54. H.F. Hameka, The Triplet State (Cambridge University Press, Cambridge, 1967), pp. 1–30

    Google Scholar 

  55. J.B. Birks, Photophysics of Aromatic Molecules (Wiley, London, 1970)

    Google Scholar 

  56. D. Beljonne, Z. Shuai, G. Pourtois, J.L. Bredas, J. Phys. Chem. A 105, 3899 (2001)

    Article  Google Scholar 

  57. K. Schmidt, S. Brovelli, V. Coropceanu, D. Beljonne, J. Cornil, C. Bazzini, T. Caronna, R. Tubino, F. Meinardi, Z. Shuai, J.L. Bredas, J. Phys. Chem. A 111, 10490 (2007)

    Google Scholar 

  58. R.S. Knox, Theory of Excitons (Academic, New York, 1965)

    Google Scholar 

  59. D.S. McClure, J. Chem. Phys. 17, 905 (1949)

    Article  ADS  Google Scholar 

  60. J. Singh, I.-K. Oh, J. Appl. Phys. 97, 063516–063529 (2005)

    Google Scholar 

  61. J. Singh, J. Non-Cryst. Solids 352, 1160–1162 (2006)

    Article  ADS  Google Scholar 

  62. J. Singh, Phys. Status Solidi C 3, 3378–3381 (2006)

    Article  ADS  Google Scholar 

  63. J. Singh, in Optical Properties of Condensed Matter and Applications, Chapter 6, ed. by J. Singh (John Wiley, Chchester, 2006), p. 107

    Google Scholar 

  64. J. Singh, Phys. Rev. B 76, 085205 (2007)

    Article  ADS  Google Scholar 

  65. J. Singh, Physics of Semiconductors and their Hetrostructures (McGraw-Hill, Singapore, 1993)

    Google Scholar 

  66. B.R. Henry, W. Siebrand, J. Chem. Phys. 51, 2396 (1969)

    Article  ADS  Google Scholar 

  67. S. Gasiorowicz, Quantum Physics, 2nd edn. (Wiley, New York, 1996)

    Google Scholar 

  68. T. Aoki, T. Shimizu, S. Komedoori, S. Kobayashi, K. Shimakawa, J. Non-Cryst. Solids 338–340, 456 (2004) and T. Aoki, J. Non-Cryst. Solids 352, 1138 (2006)

    Google Scholar 

  69. J. Singh, J. Mater. Sci.: Mater. Electron. 20, S81 (2009)

    Google Scholar 

  70. M. Klessinger, J. Michl, Excited States and Photochemistry of Organic Molecules (VCH Publishers, Winheim, 1995)

    Google Scholar 

  71. R. Farchioni, G. Grosso (eds.), Organic Electronic Materials (Springer, Berlin, Heidelberg, 2001), p. 394

    Google Scholar 

  72. D.S. McClure, J. Chem. Phys. 20, 682 (1952)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Singh, J. (2015). Electronic Properties of Noncrystalline Semiconductors. In: Singh, J., Williams, R. (eds) Excitonic and Photonic Processes in Materials. Springer Series in Materials Science, vol 203. Springer, Singapore. https://doi.org/10.1007/978-981-287-131-2_7

Download citation

Publish with us

Policies and ethics