Skip to main content

Exciton-Plasmon Coupling in Nanocomposites

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 203))

Abstract

There has been growing interest in developing nanoscale optoelectronic devices by combining nanomaterials with complementary optical properties into composite (hybrid) structures. The number of possible nanocomposites that can be built from already existing nanostructures is simply enormous. A significant amount of research on nanocomposites has been devoted to the study of exciton-plasmon interactions in metal-semiconductor nanostructures, which offer a wide range of opportunities to control light-matter interactions and electromagnetic energy flows on nanometer length scales. Strong exciton-surface plasmon coupling in metallic nanocomposites could lead to efficient transmission of quantum information between qubits for applications in quantum computing and communication. These nanocomposites also have applications in biophotonics, sensing and switching applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.R. Singh, Electronic, Photonic, Polaritonic and Plasmonic Materials (Wiley Custom, Toronto, 2014)

    Google Scholar 

  2. R.D. Artuso, G.W. Bryant, Phys. Rev. B 82, 195419 (2010)

    Article  ADS  Google Scholar 

  3. S.M. Sadeghi, L. Deng, X. Li, W.-P. Huang, Nanotechnology 20, 365401 (2009)

    Article  Google Scholar 

  4. M.-T. Cheng, S.-D. Liu, H.-J. Zhou, Z.-H. Hao, Q.-Q. Wang, Opt. Lett. 32, 2125 (2007)

    Article  ADS  Google Scholar 

  5. A. Hatef, S. Sadeghi, M.R. Singh, Nanotechnology (at press) (2012)

    Google Scholar 

  6. M. Singh, D. Schindel, A. Hatef, Appl. Phys. Lett. 99, 181106 (2012)

    Article  ADS  Google Scholar 

  7. J. Cox, M. Singh, G. Gumbs, M. Anton, F. Carreno (2011), Phys. Rev. B86, 125452 (2012)

    Google Scholar 

  8. A. Hatef, S. Sadeghi, M.R. Singh, Nanotechnology 23, 065701 (2012)

    Google Scholar 

  9. M. Singh, C. Racknor, D. Schindel, App. Phys. Lett. 101, 051115 (2012)

    Google Scholar 

  10. M. Singh, C. Racknor, D. Schindel, Appl. Phys. Lett. 99, 181106 (2011)

    Google Scholar 

  11. M.R. Singh, Phys. Rev. Lett (communicated, 2012)

    Google Scholar 

  12. F.H.L. Koppens, D.E. Chang, F.J.G. Abajo, Nano Lett. 11, 3370 (2011)

    Article  Google Scholar 

  13. Z. Chen et al., ACS Nano 4, 2964 (2010)

    Article  Google Scholar 

  14. H. Dong et al., Anal. Chem. 82, 5511 (2010)

    Article  Google Scholar 

  15. D. Sarid, W.A. Challener, Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications (Cambridge University Press, Cambridge; New York, 2010)

    Book  Google Scholar 

  16. L. Novtny, B. Hecht, Principle of Nano-Optics (Cambridge University Press, Cambridge; New York, 2006)

    Book  Google Scholar 

  17. M. Ohtsu, K. Kobayashi, Optical Near Fields (Springer, Heidelberg, 2004)

    Book  Google Scholar 

  18. S. Gaponenko, Introduction to Nanophotonics (Cambridge University Press, Cambridge; New York, 2010)

    Book  Google Scholar 

  19. U. Kribig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Heidelberg, 2004)

    Google Scholar 

  20. H. Morgan, N.G. Green, AC Electrokientics: Colloids and Nanoparticles (Research Studies Press Ltd, Baldock, 2003)

    Google Scholar 

  21. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

Download references

Acknowledgments

The author thanks Mr. Joel Cox for proofreading this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahi R. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Singh, M.R. (2015). Exciton-Plasmon Coupling in Nanocomposites. In: Singh, J., Williams, R. (eds) Excitonic and Photonic Processes in Materials. Springer Series in Materials Science, vol 203. Springer, Singapore. https://doi.org/10.1007/978-981-287-131-2_5

Download citation

Publish with us

Policies and ethics