Skip to main content

Scintillation Detectors of Radiation: Excitations at High Densities and Strong Gradients

  • Chapter
  • First Online:
Excitonic and Photonic Processes in Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 203))

Abstract

This chapter discusses the electron-hole recombination processes that occur in the high excitation densities and strong radial gradients of particle tracks in scintillator detectors of radiation. The particle tracks are commonly those of high-energy Compton- or photo-electrons produced in energy-resolving gamma-ray detectors, but could also include those of heavier charged particles such as those following interaction with neutrons. In energy-resolving radiation detectors, intrinsic proportionality of light yield to gamma ray energy or electron energy is an important concern. This chapter gives special emphasis to understanding the physical basis for nonproportionality, while reviewing recent results on fundamental physics of nonlinear quenching, cooling and capture of hot electrons, co-evolving free-carrier and exciton populations, and diffusion in the dense and highly structured excitation landscape of electron tracks. Particular attention is paid to short-pulse laser experiments at Wake Forest University giving data and insight on the above phenomena complementary to more traditional scintillator experiments using gamma-ray or electron excitation. Numerical modeling of diffusion, nonlinear quenching (NLQ), exciton formation, and linear capture processes serves to test and establish links between the laser excitation and particle excitation measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.N. Vasil’ev, in Proceedings of the 8th International Conference on Inorganic Scintillators and their Use in Scientific and Industrial Applications, 2006, pp. 1–6

    Google Scholar 

  2. Z. Wang, Y. Xie, L.W. Campbell, F. Gao, S. Kerisit, J. Appl. Phys. 112, 014906 (2012)

    Article  ADS  Google Scholar 

  3. M. Moszyński, J. Zalipska, M. Balcerzyk, M. Kapusta, W. Mengesha, J.D. Valentine, Nucl. Instrum. Methods Phys. Res. Sect. A. Accel. Spectrom. Detect. Assoc. Equip. 484, 259 (2002)

    Google Scholar 

  4. M. Moszynski, MRS Proc. 1038, 1038 (2011)

    Google Scholar 

  5. R. Murray, A. Meyer, Phys. Rev. 122, 815 (1961)

    Article  ADS  Google Scholar 

  6. S.A. Payne, W.W. Moses, S. Sheets, L. Ahle, N.J. Cherepy, B. Sturm, S. Dazeley, G. Bizarri, C. Woon-Seng, IEEE Trans. Nucl. Sci 58, 3392 (2011)

    Google Scholar 

  7. M. Kirm, V. Nagirnyi, E. Feldbach, M. De Grazia, B. Carré, H. Merdji, S. Guizard, G. Geoffroy, J. Gaudin, N. Fedorov, P. Martin, A. Vasil’ev, A. Belsky, Phys. Rev. B 79, 233103 (2009)

    Article  ADS  Google Scholar 

  8. A.N. Vasil’ev, IEEE Trans. Nucl. Sci. 55, 1054 (2008)

    Article  ADS  Google Scholar 

  9. S.A. Payne, N.J. Cherepy, G. Hull, J.D. Valentine, W.W. Moses, W.-S. Choong, IEEE Trans. Nucl. Sci. 56, 2506 (2009)

    Article  ADS  Google Scholar 

  10. M. Moszynski, J. Zalipska, M. Balcerzyk, M. Kapusta, W. Mengesha, J.D. Valentine, Nucl. Instrum. Meth. A 484, 259 (2002)

    Article  ADS  Google Scholar 

  11. P. Dorenbos, Nucl. Inst. Meth. Phys. Res. A 468, 208 (2002)

    Google Scholar 

  12. W. Setyawan, R.M. Gaume, S. Lam, R.S. Feigelson, S. Curtarolo, ACS Comb. Sci. 13, 382 (2011)

    Article  Google Scholar 

  13. Q. Li, J.Q. Grim, R.T. Williams, G.A. Bizarri, W.W. Moses, J. Appl. Phys. 109, 123716 (2011)

    Article  ADS  Google Scholar 

  14. B.D. Rooney, J.D. Valentine, IEEE Trans. Nucl. Sci. 43, 1271 (1996)

    Article  ADS  Google Scholar 

  15. G. Hull, W.-S. Choong, W.W. Moses, G. Bizarri, J.D. Valentine, S.A. Payne, N.J. Cherepy, B.W. Reutter, IEEE Trans. Nucl. Sci. 56, 331 (2009)

    Article  ADS  Google Scholar 

  16. S.A. Payne, W.W. Moses, S. Sheets, L. Ahle, N.J. Cherepy, B. Sturm, S. Dazeley, G. Bizarri, W.-S. Choong, IEEE Trans. Nucl. Sci. 58, 3392 (2011)

    Article  ADS  Google Scholar 

  17. I. V Khodyuk, P. A. Rodnyi, and P. Dorenbos, J. Appl. Phys. 107, 113513 (2010).

    Google Scholar 

  18. I. V Khodyuk and P. Dorenbos, IEEE Trans. Nucl. Sci. 59, 3320 (2012).

    Google Scholar 

  19. M. Nikl, J.A. Mares, M. Dusek, P. Lecoq, I. Dafinei, E. Auffray, G.P. Pazzi, P. Fabeni, J. Jindra, Z. Skoda, J. Phys. Condens. Matter 7, 6355 (1995)

    Article  ADS  Google Scholar 

  20. V. Nagirnyi, S. Dolgov, R. Grigonis, M. Kirm, L.L. Nagorn, F. Savikhin, V. Sirutkaitis, S. Vielhauer, A. Vasil’ev, IEEE Trans. Nucl. Sci. 57, 1182 (2010)

    Article  ADS  Google Scholar 

  21. R. Laasner, N. Fedorov, R. Grigonis, S. Guizard, M. Kirm, V. Makhov, S. Markov, V. Nagirnyi, V. Sirutkaitis, A. Vasil’ev, S. Vielhauer, I.A. Tupitsyna, J. Phys. Condens. Matter?: an Institute of Phys. J. 25, 245901 (2013)

    Google Scholar 

  22. R.T. Williams, J.Q. Grim, Q. Li, K.B. Ucer, W.W. Moses, Phys. Status Solidi (b) 248, 426 (2011)

    Article  ADS  Google Scholar 

  23. J.Q. Grim, Q. Li, K.B. Ucer, R.T. Williams, W.W. Moses, Nucl. Instrum. Methods Phys. Res. Sect. A. Accel. Spectrom. Detect. Assoc. Equip. 652, 284 (2011)

    Google Scholar 

  24. V. Nagirnyi, in Presented at the 12th International Conference on Inorganic Scintillators and Their Applications, Shanghai (2013)

    Google Scholar 

  25. M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14, 955 (1989)

    Google Scholar 

  26. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)

    Google Scholar 

  27. J.Q. Grim, Q. Li, K.B. Ucer, R.T. Williams, G.A. Bizarri, W.W. Moses, Mater. Res. Soc. Commun. Res. Lett. 2, 139 (2012)

    Google Scholar 

  28. J.Q. Grim, K.B. Ucer, A. Burger, P. Bhattacharya, E. Tupitsyn, E. Rowe, V.M. Buliga, L. Trefilova, A. Gektin, G.A. Bizarri, W.W. Moses, R.T. Williams, Phys. Rev. B 87, 125117 (2013)

    Article  ADS  Google Scholar 

  29. K. Edamatsu, M. Sumita, S. Hirota, M. Hirai, Phys. Rev. B 47, 6747 (1993)

    Article  ADS  Google Scholar 

  30. R.M. Van Ginhoven, J.E. Jaffe, S. Kerisit, K.M. Rosso, IEEE Trans. Nucl. Sci. 57, 2303 (2010)

    Google Scholar 

  31. R.T. Williams, K.B. Ucer, J.Q. Grim, K.C. Lipke, L.M. Trefilova, W.W. Moses, IEEE Trans. Nucl. Sci. 57, 1187 (2010)

    Article  ADS  Google Scholar 

  32. R. Kirkin, V.V Mikhailin, A.N. Vasil’ev. IEEE Trans. Nucl. Sci. 59, 2057 (2012)

    Google Scholar 

  33. Z. Wang, Y. Xie, B.D. Cannon, L.W. Campbell, F. Gao, S. Kerisit, J. Appl. Phys. 110, 64903 (2011)

    Article  Google Scholar 

  34. W. Martienssen, J. Phys. Chem. Solids 2, 257 (1957)

    Article  ADS  Google Scholar 

  35. G.A. Bizarri, W.W. Moses, J. Singh, A.N. Vasil’ev, R.T. Williams, J. Appl. Phys. 105, 44507 (2009)

    Article  Google Scholar 

  36. F. Gao, Y. Xie, Z. Wang, S.N. Kerist, L.W. Campbell, R.M. Van Ginhoven, M.P. Prange, in International Conference on Defects in Insulating Materials (ICDIM 2012) (2012)

    Google Scholar 

  37. J. Q. Grim, K. B. Ucer, A. Burger, G. A. Bizarri, and R. T. Williams, To Be Published (n.d.).

    Google Scholar 

  38. H. Nishimura, M. Sakata, T. Tsujimoto, M. Nakayama, Phys. Rev. B 51, 2167 (1995)

    Article  ADS  Google Scholar 

  39. L.B. Rubin, O.V Braginskaya, M.L. Isakova, N.A. Efremov, V.Z. Paschenko. J. Lumin. 29, 399 (1984)

    Google Scholar 

  40. T.R. Waite, Phys. Rev. 107, 463 (1957)

    Article  ADS  Google Scholar 

  41. J.B. Birks, The Theory and Practice of Scintillation Counting (Pergamon Press, London, 1964), p. 662

    Google Scholar 

  42. R.T. Williams, J.Q. Grim, Q. Li, K.B. Ucer, G.A. Bizarri, S. Kerisit, F. Gao, P. Bhattacharya, E. Tupitsyn, E. Rowe, V.M. Buliga, A. Burger, Proceedings of SPIE, 2013, Vol. 8852, pp. 88520J-1

    Google Scholar 

  43. A. Vasil’ev, A. Gektin, in SCINT2013, Shanghai, China, 2013

    Google Scholar 

  44. Q. Li, J.Q. Grim, N.A.W. Holzwarth, R.T. Williams, in SCINT2013, 2013

    Google Scholar 

  45. K.B. Ucer, G.A. Bizarri, A. Burger, A. Gektin, L. Trefilova, R.T. Williams, Phys. Rev. B 89, 165112 (2014)

    Google Scholar 

  46. F. Antonangeli, N. Zema, M. Piacentini, U.M. Grassano, Phys. Rev. B 37, 9036 (1988)

    Article  ADS  Google Scholar 

  47. M. Couzi, J.R. Vignalou, G. Boulon, Solid State Commun. 20, 461 (1976)

    Article  ADS  Google Scholar 

  48. Y. Abraham, N.A.W. Holzwarth, R.T. Williams, Phys. Rev. B 62, 1733 (2000)

    Article  ADS  Google Scholar 

  49. V. N. Kolobanov, I. A. Kamenskikh, V. V Mikhailin, I. N. Shpinkov, D. A. Spassky, B. I. Zadneprovsky, L. I. Potkin, G. Zimmerer, Nucl. Instrum. Meth. A 486, 496 (2002).

    Google Scholar 

  50. M. Fujita, M. Itoh, T. Katagiri, D. Iri, M. Kitaura, V.B. Mikhailik, Phys. Rev. B 77, 155118 (2008)

    Article  ADS  Google Scholar 

  51. J. Gabrusenoks, A. Veispals, A. von Czarnowski, K.-H. Meiwes-Broer, Electrochim. Acta 46, 2229 (2001)

    Article  Google Scholar 

  52. D.J. Singh, Appl. Phys. Lett. 92, 201908 (2008)

    Article  ADS  Google Scholar 

  53. Y. Cui, R. Hawrami, E. Tupitysn, P. Bhattacharya, M. Groza, M. Bryant, V. Buliga, A. Burger, N.J. Cherepy, S.A. Payne, Solid State Commun. 151, 541 (2011)

    Article  ADS  Google Scholar 

  54. D. Fröhlich, B. Staginnus, Y. Onodera, Phys. Status Solidi (b) 40, 547 (1970)

    Article  ADS  Google Scholar 

  55. K. Teegarden, G. Baldini, Phys. Rev. 155, 896 (1967)

    Article  ADS  Google Scholar 

  56. K.S. Song, R.T. Williams, Self-Trapped Excitons, Second (Springer, Heidelberg, 1996)

    Book  Google Scholar 

  57. J.E. Eby, K.J. Teegarden, D.B. Dutton, Phys. Rev. 116, 1099 (1959)

    Article  ADS  Google Scholar 

  58. P. A. Rodnyi, in (CRC Press LLC, 1997), p. 79.

    Google Scholar 

  59. P. Erhart, A. Schleife, B. Sadigh, D. Aberg, arXiv:1311.350v1 [cond-mat.mtrl-sci] (2013).

    Google Scholar 

  60. S. Agostinelli and others, Nucl. Instrum. Meth. A 506, 250 (2003).

    Google Scholar 

  61. J.Q. Grim, Q. Li, K.B. Ucer, A. Burger, G.A. Bizarri, W.W. Moses, R.T. Williams, Phys. Status Solidi (a) 209, 2421 (2012)

    Article  ADS  Google Scholar 

  62. Q. Li, J.Q. Grim, R.T. Williams, G.A. Bizarri, W.W. Moses, Nucl. Instrum. Meth. A 652, 288 (2011)

    Article  ADS  Google Scholar 

  63. W. Setyawan, R.M. Gaume, R.S. Feigelson, S. Curtarolo, IEEE Trans. Nucl. Sci. 56, 2989 (2009)

    Article  ADS  Google Scholar 

  64. J. Singh, J. Appl. Phys. 110, 024503 (2011)

    Article  ADS  Google Scholar 

  65. F. Gao, Y. Xie, S. Kerisit, L.W. Campbell, W.J. Weber, Nucl. Instrum. Methods Phys. Res. Sect. A. Accel. Spectrom. Detect. Assoc. Equip. 652, 564 (2011)

    Google Scholar 

  66. A. Kozorezov, J.K. Wigmore, A. Owens, J. Appl. Phys. 112, 53709 (2012)

    Article  ADS  Google Scholar 

  67. http://www.detectors.saint-gobain.com/(n.d.)

  68. J.Q. Grim, K.B. Ucer, R.T. Williams, A. Burger, P. Bhattacharya, E. Tupitsyn, G.A. Bizarri, W.W. Moses, in (Presented at SORMA West, Oakland, May 16 (2012)

    Google Scholar 

  69. B.P. Aduev, E.D. Aluker, G.M. Belokurov, V.N. Shvayko, Phys. Status Solidi (b) 208, 137 (1998)

    Article  ADS  Google Scholar 

  70. H.B. Dietrich, R.B. Murray, J. Lumin. 5, 155 (1972)

    Article  Google Scholar 

  71. Q. Li, J.Q. Grim, K.B. Ucer, A. Burger, G.A. Bizarri, W.W. Moses, R.T. Williams, Phys. Status Solidi RRL 6, 346 (2012)

    Article  Google Scholar 

  72. S. Marchetti, M. Martinelli, R. Simili, J. Phys. Condens. Matter 14, 3653 (2002)

    Article  ADS  Google Scholar 

  73. U. Strauss, W.W. Rühle, K. Köhler, Appl. Phys. Lett. 62, 55 (1993)

    Article  ADS  Google Scholar 

  74. Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames, Appl. Phys. Lett. 91, 141101 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Nuclear Security Administration, Office of Nonproliferation Research and Development (NA-22) of the U.S. Department of Energy under Contracts DE-NA0001012 and DE-AC02-05CH11231. The authors wish to thank Jai Singh, Bill Moses, Andrey Vasil’ev, Vitali Nagirnyi, Steve Payne, Daniel Aberg, Babak Sadigh, Sebastien Kerisit, and Fei Gao for helpful discussions. We thank Jaimie Grim for manuscript editing. Partial support was also provided by the US Department of Homeland Security, Domestic Nuclear Detection Office, under National Science Foundation contract ECCS-1348361of the Academic Research Initiative (ARI) program. This support does not constitute an express or implied endorsement on the part of the Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Williams, R.T., Grim, J.Q., Li, Q., Ucer, K.B., Bizarri, G.A., Burger, A. (2015). Scintillation Detectors of Radiation: Excitations at High Densities and Strong Gradients. In: Singh, J., Williams, R. (eds) Excitonic and Photonic Processes in Materials. Springer Series in Materials Science, vol 203. Springer, Singapore. https://doi.org/10.1007/978-981-287-131-2_10

Download citation

Publish with us

Policies and ethics