Skip to main content

Oligostilbenoids from Vatica Species and Bioactivities

  • Chapter
  • First Online:
Recent Trends in Physics of Material Science and Technology

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 204))

  • 1521 Accesses

Abstract

Reactive species (RS) which are generated from the pollution, deep fried and spicy foods, leakage of electrons from mitochondrial electron transport chains etc. may result in an oxidative damage in the body. The oxidative damage may lead to various diseases such as Alzheimer, atherosclerosis and cancer. In order to prevent such diseases, antioxidants play important roles in reducing the powerful oxidizing agents. Vatica species that belongs to the family of Dipterocarpaceae has been widely known to contain abundant source of oligostilbenoids which demonstrated interesting result in biological activities such as anticancer and antioxidant. This may lead to a development of drugs as well as natural antioxidants. In this chapter, we are highlighting the oligostilbenoids isolated from Vatica species from various researcher as well as the biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  2. Keng H (1983) Malayan seed plants, 3rd edn. Singapore University Press, Singapore

    Google Scholar 

  3. Newman MF, Burges PF, Whitemore TC (1999) Pedoman Identifikasi Pohon Dipterocarpaceae Pulau Kalimantan. Prosea, Bogor

    Google Scholar 

  4. Symington CF (1974) Foresters’ manual of dipterocarps. Universiti Malaya, Kuala Lumpur

    Google Scholar 

  5. Usher G (1974) A dictionary of plants used by man, 1st edn. Constable and Company Ltd, London

    Google Scholar 

  6. Ashton PS, Arboretum A (1982) Dipterocarpaceae: Flora Malesiana 9, vol 1, 2nd edn. Dr. W. Junk Publishers, Hague

    Google Scholar 

  7. Foxworthy FW (1932) Diptercarpaceae of the Malay Peninsula, Malayan forest records No. 10. Singapore

    Google Scholar 

  8. Bentham G (1965) Genera plantarum, vol 1. Stechert-Hafner Service Agency Inc., New York

    Google Scholar 

  9. Jong K (1976) Cytology of the Dipterocarpaceae: tropical trees. Academic Press, London

    Google Scholar 

  10. Kostermans AJG (1992) A handbook of the Dipterocarpaceae of Sri Lanka. WHT Publications, Colombo

    Google Scholar 

  11. Desch HE (1941) Dipterocarp timbers of the Malay Peninsula. In: Malayan forest records No. 14. Caxton Press Ltd, Kuala Lumpur

    Google Scholar 

  12. Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula, vol 2. Art Printing Works, Kuala Lumpur

    Google Scholar 

  13. Ridley HN (1922) The Flora of the Malay Peninsula, vol 1, 1st edn. L. Reeve & Co. Ltd, London

    Google Scholar 

  14. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18(9):685–716

    Article  Google Scholar 

  15. Halliwell B (1996) Antioxidants in human health and disease. Ann Rev Nutr 16:33–50

    Article  Google Scholar 

  16. Halliwell B (2002) Effect of diet on cancer development: is oxidative DNA damage a biomarker? Free Radic Biol Med 32:968–974

    Article  Google Scholar 

  17. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. University Press, Oxford

    Google Scholar 

  18. Sen CK, Sies H, Baeuerle PA et al (2000) Antioxidant and redox regulation of genes. Academic Press, San Diego

    Google Scholar 

  19. Bowie A, O’Neill LAJ (2000) Oxidative stress and nuclear factor-κB activation. Biochem Pharmacol 59:13–23

    Article  Google Scholar 

  20. Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401:1–11

    Article  Google Scholar 

  21. Pryor WA (1991) The antioxidant nutrient and disease prevention—what do we know and what do we need to find out? Am J Clin Nutr 53:391–393

    Google Scholar 

  22. Agrawal S, Kulkarni GT, Sharma VN (2011) A comparative study on the antioxidant activity of methanolic extracts of Terminalia paniculata and Madhuca longifolia. Free Radic Antioxid 1(4):62–68

    Article  Google Scholar 

  23. Sawa T, Ohshima H (2006) Nitrative DNA damage in inflammation and its possible role in carcinogenesis. Nitric Oxide 14:91–100

    Article  Google Scholar 

  24. Hofseth LJ, Saito S, Hussain SP et al (2003) Nitric oxide-induced cellular stress and p53 activation in chronic inflammation. Proc Natl Acad Sci USA 100:143–148

    Article  ADS  Google Scholar 

  25. Cross CE, Halliwell B, Borish ET et al (1987) Oxygen radicals and human disease. Ann Intern Med 107:526–545

    Article  Google Scholar 

  26. Diaz MN, Frei B, Vita JA et al (1997) Antioxidants and atherosclerotic heart disease. N Engl J Med 337:408–416

    Article  Google Scholar 

  27. Wichi HP (1988) Enhanced tumor development by butylated hydroxyanisole (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food Chem Toxicol 26:717–723

    Article  Google Scholar 

  28. Nagmoti DM, Khatri DK, Juvekar PR et al (2012) Antioxidant activity and free radical-scavenging potential of Pithecellobium dulce Benth seed extracts. Free Radic Antioxid 2(2):37–43

    Article  Google Scholar 

  29. Ito T, Akao Y, Yi H et al (2003) Antitumor effect of resveratrol oligomers against human cancer cell lines and the molecular mechanism of apoptosis induced by vaticanol C. Carcinogenesis 24(9):1489–1497

    Article  Google Scholar 

  30. Kamarozaman AS, Latip J, Syah YM et al (2013) Oligostilbenoids from Vatica pauciflora and the oxidative effect on Chang cells. In: Journal of Physics: Conference Series, 2013 international conference on science and engineering in mathematics, chemistry and physics (ScieTech 2013), January 2013, vol 423. IOP Publishing, Jakarta, p 012045. doi:10.1088/1742-6596/423/1/012045

  31. Ito T, Tanaka T, Iinuma M et al (2003) New resveratrol oligomers in the stem bark of Vatica pauciflora. Tetrahedron 59(28):5347–5363

    Article  Google Scholar 

  32. Gorham J, Tori M, Asakawa Y (1995) The biochemistry of the stilbenoids. Chapman & Hall, London

    Google Scholar 

  33. Huang K-S, Lin M, Yu LN et al (2000) Four novel oligostilbenes from the roots of Vitis amurensis. Tetrahedron 56:1321–1329

    Article  Google Scholar 

  34. Sotheeswaran S, Pasupathy V (1993) Distribution of resveratrol oligomer in plants. Phytochemistry 32(5):1983–1992

    Article  Google Scholar 

  35. Tanaka T, Ito T, Nakaya K et al (2000) Oligostilbenoids in stem bark of Vatica rassak. Phytochemistry 54:63–69

    Article  Google Scholar 

  36. Seo E-K, Chai H, Constant HL et al (1999) Resveratrol tetramers from Vatica diospyroides. J Org Chem 64:6976–6983

    Article  Google Scholar 

  37. Abe N, Ito T, Ohguchi K et al (2010) Resveratrol oligomers from Vatica albiramis. J Nat Prod 73:1499–1506

    Article  Google Scholar 

  38. Latip J, Zain WZWM, Ahmat N et al (2011) Cytotoxic oligostilbenoids from Vatica odorata. Aus J Basic Appl Sci 5(6):113–118

    Google Scholar 

  39. Atun S, Sjamsul AA, Emilio LG et al (2004) Oligostilbenoids from Vatica umbonata (Dipterocarpaceae). Biochem Syst Ecol 32:1051–1053

    Article  Google Scholar 

  40. Sultanbawa MUS, Surendrakumar S, Wazeer MIM et al (1981) Novel resveratrol tetramer, vaticaffinol, from Vatica affinis Thw (Dipterocarpaceae). J Chem Soc Chem Commun 16:1204–1206

    Google Scholar 

  41. Hirano Y, Kondo R, Sakai K (2003) Novel stilbenoids isolated from the heartwood of Shorea laeviforia. J Wood Sci 49:53–58

    Article  Google Scholar 

  42. Ito T, Tanaka T, Iinuma M et al (2004) Three new resveratrol oligomers from the stem bark of Vatica pauciflora. J Nat Prod 67(6):932–937

    Article  Google Scholar 

  43. Abe N, Ito T, Oyama M et al (2011) Resveratrol derivatives from Vatica albiramis. Chem Pharm Bull 59(4):452–457

    Article  Google Scholar 

  44. Abe N, Ito T, Oyama M et al (2011) Resveratrol dimers with an oxabicyclo ring in Vatica albiramis. Heterocycles 83(3):571–580

    Article  Google Scholar 

  45. Ito T, Tanaka T, Ido Y et al (2001) Five new oligostilbenes with one or two dihydrofurans from the stem bark of Vatica rassak. Heterocycles 55(3):557–567

    Article  Google Scholar 

  46. Ito T, Ali Z, Furusawa M et al (2005) Two novel trimeric resveratrol derivatives from Cotylelobium lanceolatum. Chem Biodivers 2:1200–1216

    Article  Google Scholar 

  47. Ito T, Tanaka T, Nakaya K-I et al (2001) A novel bridged stilbenoid trimer and four highly condensed stilbenoid oligomers in Vatica rassak. Tetrahedron 57:7309–7321

    Article  Google Scholar 

  48. Zgoda-Pols JR, Freyer AJ, Killmer LB et al (2002) Antimicrobial resveratrol tetramers from the stem bark of Vatica oblongifolia ssp. oblongifolia. J Nat Prod 65:1554–1559

    Article  Google Scholar 

  49. Tanaka T, Ito T, Nakaya K et al (2000) Vaticanol D, a novel resveratrol hexamer isolated from Vatica rassak. Tetrahedron Lett 41:7929–7932

    Article  Google Scholar 

  50. Chichewicz RH, Kouzi SA (2002) Resveratrol oligomers: structure, chemistry and biological activity. Stud Nat Prod Chem 26:507–579

    Article  Google Scholar 

  51. Seo E-K, Douglas KA (2000) Bioactive constituents of the family Dipterocarpaceae. Stud Nat Prod Chem 23:531–561

    Article  Google Scholar 

  52. Sultanbawa MUS, Surendrakumar S, Bladon P (1987) Distichol an antibacterial polyphenol from Shorea disticha. Phytochemistry 26(3):799–801

    Article  Google Scholar 

  53. Zain WZWM, Ahmat N, Norizan NH et al (2011) The evaluation of antioxidant, antibacterial and structural identification activity of trimer resveratrol from Malaysia’s Dipterocarpaceae. Aus J Basic Appl Sci 5(5):926–929

    Google Scholar 

  54. Dai JR, Hallock YF, Cardellina JH et al (1998) HIV-inhibitory and cytotoxic oligostilbenoids from the leaves of Hopea malibato. J Nat Prod 61:351–353

    Article  Google Scholar 

  55. Huang K-S, Lin M, Cheng GF (2001) Anti-inflammatory tetramers of resveratrol from the roots of Vitis amurensis and the conformations of the seven-membered ring in some oligostilbenes. Phytochemistry 58:357–362

    Article  Google Scholar 

  56. Kitanaka S, Ikezawa T, Yasukawa K et al (1990) (+)-α-viniferin, an anti-inflammatory compound from Caragana chamlagu root. Chem Pharm Bull 38:432–435

    Article  Google Scholar 

  57. Haryoto S, Lia DJ, Yana MS et al (2008) Oligostilbenoids from Shorea gibbosa and their cytotoxic properties against P-388 cells. J Nat Med 62:195–198

    Article  Google Scholar 

  58. Kundu JK, Surh YJ (2004) Molecular basis of chemoprevention by resveratrol: NF-κB and AP-1 as potential targets. Mutat Res 555:65–80

    Article  Google Scholar 

  59. Jang M, Cai L, Udeani GO et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  Google Scholar 

  60. Bhat KPL, Lantvit D, Christov K et al (2001) Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models. Cancer Res 61:7456–7463

    Google Scholar 

  61. Li ZG, Hong T, Shimada Y et al (2002) Suppression of N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis in F344 rats by resveratrol. Carcinogenesis 23:1531–1536

    Article  Google Scholar 

  62. Wenzel E, Somoza V (2005) Metabolism and bioavailability of transresveratrol. Mol Nutr Food Res 49:472–481

    Article  Google Scholar 

  63. Whitehead TP, Robinson D, Allaway S et al (1995) Effect of red wine ingestion on the antioxidant capacity of serum. Clin Chem 41(1):32–35

    Google Scholar 

  64. Holvoet P (2004) Oxidized LDL and coronary heart disease. Acta Cardiol 59(5):479–484

    Article  Google Scholar 

  65. Liu W-B, Hu L, Hu Q et al (2013) New resveratrol oligomer derivatives from the roots of Rheum lhasaense. Molecules 18:7093–7102. doi:10.3390/molecules18067093

    Article  Google Scholar 

  66. Ngoc TM, Hung TM, Thuong PT et al (2008) Inhibition of human low density lipoprotein and high density lipoprotein oxidation by oligostilbenes from Rhubarb. Biol Pharm Bull 31(9):1809–1812

    Article  Google Scholar 

  67. Matsuda H, Asao Y, Nakamura S et al (2009) Antidiabetogenic constituents from the Thai traditional medicine Cotylelobium melanoxylon. Chem Pharm Bull 57(5):487–494

    Article  Google Scholar 

  68. Morikawa T, Chaipech S, Matsuda H et al (2012) Antidiabetogenic oligostilbenoids and 3-ethyl-4-phenyl-3,4-dihydroisocoumarins from the bark of Shorea roxburghii. Bioorg Med Chem 20:832–840

    Article  Google Scholar 

  69. Muhtadi Euis HH, Lia DJ et al (2006) Cytotoxic resveratrol oligomers from the tree bark of Dipterocarpus hasseltii. Fitoterapia 77:550–555

    Article  Google Scholar 

  70. Ohyama M, Tanaka T, Ito T et al (1999) Antitumor agent 200.1 Cytotoxicity of naturally occuring resveratrol oligomers and their acetate derivatives. Bioorg Med Chem Lett 9:3057–3060

    Article  Google Scholar 

  71. Nazri NAAM, Ahmat N, Abdullah M et al (2012) Antioxidant, antimicrobial and cytotoxic activities of resveratrol oligomers of Shorea macroptera Dyer. Aus J Basic Appl Sci 6(8):431–436

    Google Scholar 

  72. Niesen D, Gonzalez-Sarrias A, Yuan T et al (2012) Bioassay-guided isolation of cytotoxic constituents from Carex vulpinodea seeds. In: 44th ACS national meeting and exposition, Philadelphia, PA, USA, August 2012

    Google Scholar 

  73. Yamada M, Hayashi K-I, Ikeda S et al (2006) Inhibitory activity of plant stilbene oligomers against DNA Topoisomerase II. Biol Pharm Bull 29(7):1504–1507

    Article  Google Scholar 

  74. Bertelli AAE, Giovannini L, Giannessi D et al (1995) Antiplatelet activity of synthetic and natural resveratrol in red wine. Int J Tissue React 17(1):1–3

    Google Scholar 

  75. Wang Z, Huang Y, Zou J et al (2002) Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro. Int J Mol Med 9(1):77–79

    Google Scholar 

  76. Dong W, Li N, Gao D et al (2008) Resveratrol attenuates ischemic brain damage in the delayed phase after stroke and induces messenger RNA and protein express for angiogenic factors. J Vasc Surg 48(3):709–714

    Article  Google Scholar 

  77. Orsini F, Pelizzoni F, Verotta L et al (1997) Isolation, synthesis and antiplatelet aggregation activity of resveratrol 3-O-β-D-glucopyranoside and related compounds. J Nat Prod 60:1082–1087

    Article  Google Scholar 

  78. Ohguchi K, Tanaka T, Ito T et al (2003) Inhibitory effects of resveratrol derivatives from Dipterocarpaceae plants on tyrosinase activity. Biosci Biotechnol Biochem 67(7):1587–1589

    Article  Google Scholar 

  79. Yanez M, Fraiz N, Cano E et al (2006) (-)-Trans-epsilon-viniferin, a polyphenol present in wines, is an inhibitor of noradrenaline and 5-hydroxytryptamine uptake and of monoamine oxidase activity. Eur J Pharmacol 542(1–3):54–60

    Article  Google Scholar 

  80. Kim HJ, Chang EJ, Bae SJ et al (2002) Cytotoxic and antimutagenic stilbenes from seeds of Paeonia lactiflora. Arch Pharmacal Res 25:293–299

    Article  Google Scholar 

  81. Yao C-S, Lin M, Wang Y-H et al (2004) Synthesis of the active stilbenoids by photooxidation reaction of trans-ε-viniferin. Chin J Chem 22(11):1350–1355

    Article  Google Scholar 

  82. Lim KG, Gray AI, Pyne S et al (2012) Resveratrol dimers are novel sphingosine kinase 1 inhibitors and affect sphingosine kinase 1 expression and cancer cell growth and survival. Br J Pharmacol 166(5):1605–1616

    Article  Google Scholar 

  83. Morikawa T, Chaipech S, Matsuda H et al (2012) Anti-hyperlipidemic constituents from the bark of Shorea roxburghii. J Nat Med 66:516–524. doi:10.1007/s11418-011-0619-6

    Article  Google Scholar 

  84. Bala AEA, Kollmann A, Ducrot PH et al (2000) Cis-ε-viniferin: a new antifungal resveratrol dehydrodimer from Cyphostemma crotalarioides roots. J Phytopathology 148:29–32

    Google Scholar 

  85. Chen X, Qiao H, Liu T et al (2012) Inhibition of herpes simplex virus infection by oligomeric stilbenoids through ROS generation. Antiviral Res 95:30–36

    Article  Google Scholar 

  86. Fukumoto H, Morimoto M, Fukuda Y et al (2007) Antifeedants in tropical Asian species, resak, against a subterranean termite, Reticulitermes speratus (Kolbe). Kinki Daigaku Nogakubu Kiyo 40:31–38

    Google Scholar 

  87. Subeki Nomura S, Matsuura H et al (2005) Anti-babesial activity of some Central Kalimantan plant extracts and active oligostilbenoids from Shorea balangeran. Planta Med 71(5):420–423

    Article  Google Scholar 

  88. Nitta T, Arai T, Takamatsu H et al (2002) Antibacterial activity of extracts prepared from tropical and subtropical plants on Methicillin-Resistant Staphylococcus aureus. J Health Sci 48(3):273–276

    Article  Google Scholar 

  89. Feng L-L, Wu X-F, Liu H-L et al (2013) Vaticaffinol, a resveratrol tetramer, exerts more preferable immunosuppressive activity than its precursor in vitro and in vivo through multiple aspects against activated T lymphocytes. Toxicol Appl Pharmacol 267:167–173

    Article  Google Scholar 

Download references

Acknowledgment

We would like to express our greatest appreciation to the Ministry of Science, Technology and Innovation, Malaysia for the grant 02-01-02-SF0197 and Centre of Foundation Studies, UiTM Puncak Alam for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kamarozaman .

Editor information

Editors and Affiliations

Appendix

Appendix

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kamarozaman, A.S., Rajab, N.F., Latip, J. (2015). Oligostilbenoids from Vatica Species and Bioactivities. In: Gaol, F., Shrivastava, K., Akhtar, J. (eds) Recent Trends in Physics of Material Science and Technology. Springer Series in Materials Science, vol 204. Springer, Singapore. https://doi.org/10.1007/978-981-287-128-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-128-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-127-5

  • Online ISBN: 978-981-287-128-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics