Skip to main content

Emerging Green Technologies and Environment Friendly Products for Sustainable Textiles

  • Chapter
  • First Online:
Roadmap to Sustainable Textiles and Clothing

Part of the book series: Textile Science and Clothing Technology ((TSCT))

Abstract

Textiles production processes such as sizing, scouring, bleaching, mercerizing, dyeing, printing, and finishing are characterized by a huge consumption of water, energy, and chemicals. The toxic effluent discharge generated in these processes mainly contains by-products, residual dyes, salts, acids and alkalis, auxiliary chemicals, and other solvents. Their discharge into neighboring water bodies is posing a serious threat to the flora and fauna. At present, however, development in the textile and clothing industry has focused on the use of some green technologies as alternatives to conventional wet processes to promote sustainable production and consumption of textiles and clothing. In recent years, emphasis has been put on developing cleaner, cost-effective, and value-added textile products for a variety of applications without compromising the issues related to health and the environment. This chapter is intended to provide a summary of recent developments in the coloration and finishing of textile fibers and to provide details of the ecofriendly strategies developed to reduce the waste generation in the textiles and clothing sector. Finally, their implications in the sustainability of clothing products are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore SB, Ausley LW (2004) Systems thinking and green chemistry in the textile industry: concepts, technologies and benefits. J Clean Prod 12:585–601

    Google Scholar 

  2. Farooq A, Ali S, Abbas N, Fatima GA, Ashraf MA (2013) Comparative performance evaluation of conventional bleaching and enzymatic bleaching with glucose oxidase on knitted cotton fabric. J Clean Prod 42:167–171

    CAS  Google Scholar 

  3. Hasanbeigi A, Price L (2012) A review of energy use and energy efficiency technologies for the textile industry. Renew Sust Energ Rev 16:3648–3665

    Google Scholar 

  4. Punrattanasin N, Nakpathom M, Somboon B, Narumol N, Rungruangkitkrai N, Mongkholrattanasit R (2013) Silk fabric dyeing with natural dye from mangrove bark (Rhizophora apiculata Blume) extract. Ind Crops Prod 49:122–129

    CAS  Google Scholar 

  5. Cay A, Tarakçıoğlu I, Hepbasli A (2009) Assessment of finishing processes by exhaustion principle for textile fabrics: an exergetic approach. Appl Therm Eng 29:2554–2561

    CAS  Google Scholar 

  6. El-Molla MM, Schneider R (2006) Development of ecofriendly binders for pigment printing of all types of textile fabrics. Dyes Pigm 71:130–137

    CAS  Google Scholar 

  7. Kozicki M, Sąsiadek E, Kołodziejczyk M, Komasa J, Adamus A, Maniukiewicz W, Pawlaczyk A, Szynkowska M, Rogowski J, Rybicki E (2013) Facile and durable antimicrobial finishing of cotton textiles using a silver salt and UV light. Carbohydr Polym 91:115–127

    CAS  Google Scholar 

  8. Teli MD, Rohera P, Sheikh J, Singhal R (2009) Application of germinated maize starch in textile printing. Carbohydr Polym 75:599–603

    CAS  Google Scholar 

  9. Eren HA, Anis P, Davulcu A (2009) Enzymatic one-bath desizing—bleaching—dyeing process for cotton fabrics. Text Res J 79:1091–1098

    CAS  Google Scholar 

  10. Ozturk E, Yetis U, Dilek FB, Demirer GN (2009) A chemical substitution study for a wet processing textile mill in Turkey. J Clean Prod 17:239–247

    CAS  Google Scholar 

  11. Khandegar V, Saroha AK (2013) Electrocoagulation for the treatment of textile industry effluent—a review. J Environ Manage 128:949–963

    CAS  Google Scholar 

  12. Shahid M, Shahid ul I, Mohammad F (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331

    Google Scholar 

  13. Ahmed NS, El-Shishtawy RM (2010) The use of new technologies in coloration of textile fibers. J Mater Sci 45:1143–1153

    CAS  Google Scholar 

  14. Islam S, Shahid M, Mohammad F (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—a review. Ind Eng Chem Res 52:5245–5260

    Google Scholar 

  15. Long J-J, Cui C-L, Wang L, Xu H-M, Yu Z-J, Bi X-P (2013) Effect of treatment pressure on wool fiber in supercritical carbon dioxide fluid. J Clean Prod 43:52–58

    CAS  Google Scholar 

  16. Ngo TT, Liotta CL, Eckert CA, Kazarian SG (2003) Supercritical fluid impregnation of different azo-dyes into polymer: in situ UV/Vis spectroscopic study. J Supercrit Fluids 27:215–221

    CAS  Google Scholar 

  17. Beltrame PL, Castelli A, Selli E, Mossa A, Testa G, Bonfatti AM, Seves A (1998) Dyeing of cotton in supercritical carbon dioxide. Dyes Pigm 39:335–340

    CAS  Google Scholar 

  18. Saus W, Knittel D, Schollmeyer E (1993) Dyeing of textiles in supercritical carbon dioxide. Text Res J 63:135–142

    CAS  Google Scholar 

  19. Guzel B, Akgerman A (2000) Mordant dyeing of wool by supercritical processing. J Supercrit Fluids 18:247–252

    CAS  Google Scholar 

  20. van der Kraan M, Fernandez Cid MV, Woerlee GF, Veugelers WJT, Witkamp GJ (2007) Dyeing of natural and synthetic textiles in supercritical carbon dioxide with disperse reactive dyes. J Supercrit Fluids 40:470–476

    Google Scholar 

  21. Gao D, Cui H-S, Huang T-T, Yang D-F, Lin J-X (2014) Synthesis of reactive disperse dyes containing halogenated acetamide group for dyeing cotton fabric in supercritical carbon dioxide. J Supercrit Fluids 86:108–114

    CAS  Google Scholar 

  22. Cid F, van Spronsen J, van der Kraan M, Veugelers WJT, Woerlee GF, Witkamp GJ (2007) A significant approach to dye cotton in supercritical carbon dioxide with fluorotriazine reactive dyes. J Supercrit Fluids 40:477–484

    Google Scholar 

  23. Xiao-Tu L, Zheng-Hua Z, Kong-Chang C (1989) The kinetics of the hydrolysis and alcoholysis of some model monofluorotriazinyl reactive dyes. Dyes Pigm 11:123–136

    Google Scholar 

  24. Özcan AS, Clifford AA, Bartle KD, Lewis DM (1998) Dyeing of cotton fibres with disperse dyes in supercritical carbon dioxide. Dyes Pigm 36:103–110

    Google Scholar 

  25. Sawada K, Ueda M (2004) Evaluation of the dyeing mechanism of an acid dye on protein fibers in supercritical CO2. Dyes Pigm 63:77–81

    CAS  Google Scholar 

  26. Long J-J, Ma Y-Q, Zhao J-P (2011) Investigations on the level dyeing of fabrics in supercritical carbon dioxide. J Supercrit Fluids 57:80–86

    CAS  Google Scholar 

  27. Hori T, Kongdee A (2014) Dyeing of PET/co-PP composite fibers using supercritical carbon dioxide. Dyes Pigm 105:163–166

    CAS  Google Scholar 

  28. Bechtold T, Burtscher E, Gmeiner D, Bobleter O (1991) The redox-catalysed reduction of dispersed organic compounds: investigations on the electrochemical reduction of insoluble organic compounds in aqueous systems. J Electroanal Chem Interfac Electrochem 306:169–183

    CAS  Google Scholar 

  29. Bechtold T, Turcanu A (2009) Electrochemical reduction in vat dyeing: greener chemistry replaces traditional processes. J Clean Prod 17:1669–1679

    CAS  Google Scholar 

  30. Roessler A, Crettenand D (2004) Direct electrochemical reduction of vat dyes in a fixed bed of graphite granules. Dyes Pigm 63:29–37

    CAS  Google Scholar 

  31. Božič M, Kokol V (2008) Ecological alternatives to the reduction and oxidation processes in dyeing with vat and sulphur dyes. Dyes Pigm 76:299–309

    Google Scholar 

  32. Meksi N, Ben Ticha M, Kechida M, Mhenni MF (2012) Using of ecofriendly α-hydroxycarbonyls as reducing agents to replace sodium dithionite in indigo dyeing processes. J Clean Prod 24:149–158

    CAS  Google Scholar 

  33. Bechtold T, Turcana A (2006) Iron-complexes of bis(2-hydroxyethyl)-amino-compounds as mediators for the indirect reduction of dispersed vat dyes—cyclic voltammetry and spectroelectrochemical experiments. J Electroanal Chem 591:118–126

    Google Scholar 

  34. Bechtold T, Burtscher E, Amann A, Bobleter O (1993) Alkali-stable iron complexes as mediators for the electrochemical reduction of dispersed organic dyestuffs. J Chem Soc, Faraday Trans 89:2451–2456

    CAS  Google Scholar 

  35. Bechtold T, Fitz-Binder C, Turcanu A (2010) Electrochemical characteristics and dyeing properties of selected 9,10-anthraquinones as mediators for the indirect cathodic reduction of dyes. Dyes Pigm 87:194–203

    CAS  Google Scholar 

  36. Chavan RB, Chakraborty JN (2001) Dyeing of cotton with indigo using iron(II) salt complexes. Color Technol 117:88–94

    CAS  Google Scholar 

  37. Kulandainathan MA, Muthukumaran A, Patil K, Chavan RB (2007) Potentiostatic studies on indirect electrochemical reduction of vat dyes. Dyes Pigm 73:47–54

    CAS  Google Scholar 

  38. Roessler A, Jin X (2003) State of the art technologies and new electrochemical methods for the reduction of vat dyes. Dyes Pigm 59:223–235

    CAS  Google Scholar 

  39. Blackburn RS, Bechtold T, John P (2009) The development of indigo reduction methods and pre-reduced indigo products. Color Technol 125:193–207

    CAS  Google Scholar 

  40. Fouda MMG, El Shafei A, Sharaf S, Hebeish A (2009) Microwave curing for producing cotton fabrics with easy care and antibacterial properties. Carbohydr Polym 77:651–655

    CAS  Google Scholar 

  41. Hashem M, Taleb MA, El-Shall FN, Haggag K (2014) New prospects in pretreatment of cotton fabrics using microwave heating. Carbohydr Polym 103:385–391

    CAS  Google Scholar 

  42. Bhat NV, Kale MJ (2012) Interaction of microwave radiation with polyester yarn to enhance its textile properties. Fibers Polym 13:936–942

    CAS  Google Scholar 

  43. Hakeim O, Nassar S, Haggag K (2003) Greener printing of natural colour using microwave fixation. Indian J Fibre Text Res 28:216–220

    CAS  Google Scholar 

  44. Al-Mousawi SM, El-Apasery MA, Mahmoud HM (2012) A facile synthesis of arylazonicotinates for dyeing polyester fabrics under microwave irradiation and their biological activity profiles. Molecules 17:11495–11506

    CAS  Google Scholar 

  45. Al-Etaibi AM, El-Apasery MA, Ibrahim MR, Al-Awadi NA (2012) A facile synthesis of new monoazo disperse dyes derived from 4-hydroxyphenylazopyrazole-5-amines: evaluation of microwave assisted dyeing behavior. Molecules 17:13891–13909

    CAS  Google Scholar 

  46. Al-Etaibi AM, El-Apasery MA, Mahmoud HM, Al-Awadi NA (2012) One-pot synthesis of disperse dyes under microwave irradiation: dyebath reuse in dyeing of polyester fabrics. Molecules 17:4266–4280

    CAS  Google Scholar 

  47. Al-Mousawi SM, El-Apasery MA, Elnagdi MH (2013) Microwave assisted dyeing of polyester fabrics with disperse dyes. Molecules 18:11033–11043

    CAS  Google Scholar 

  48. Carneiro N, Souto AP, Silva E, Marimba A, Tena B, Ferreira H, Magalhães V (2001) Dyeability of corona-treated fabrics. Color Technol 117:298–302

    CAS  Google Scholar 

  49. Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C (2008) Non-thermal plasma treatment of textiles. Prog Org Coat 202:3427–3449

    CAS  Google Scholar 

  50. Hegemann D (2006) Plasma polymerization and its applications in textiles. Indian J Fib Text Res 31:99

    CAS  Google Scholar 

  51. Tsafack MJ, Levalois-Grützmacher J (2006) Flame retardancy of cotton textiles by plasma-induced graft-polymerization (PIGP). Prog Org Coat 201:2599–2610

    CAS  Google Scholar 

  52. Tsafack MJ, Levalois-Grützmacher J (2007) Towards multifunctional surfaces using the plasma-induced graft-polymerization (PIGP) process: flame and waterproof cotton textiles. Prog Org Coat 201:5789–5795

    CAS  Google Scholar 

  53. Yuranova T, Rincon AG, Bozzi A, Parra S, Pulgarin C, Albers P, Kiwi J (2003) Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver. J Photochem Photobiol 161:27–34

    Google Scholar 

  54. Koh E, Hong KH (2014) Gallnut extract-treated wool and cotton for developing green functional textiles. Dyes Pigm 103:222–227

    CAS  Google Scholar 

  55. Yaman N, Özdoğan E, Seventekin N, Ayhan H (2009) Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff. Appl Surf Sci 255:6764–6770

    Google Scholar 

  56. Hegemann D, Hossain MM, Balazs DJ (2007) Nanostructured plasma coatings to obtain multifunctional textile surfaces. Prog Org Coat 58:237–240

    CAS  Google Scholar 

  57. Tseng HJ, Hsu S, Wu MW, Hsueh TH, Tu PC (2009) Nylon textiles grafted with chitosan by open air plasma and their antimicrobial effect. Fibers Polym 10:53–59

    CAS  Google Scholar 

  58. Vankar PS, Shanker R, Dixit S, Mahanta D, Tiwari S (2008) Sonicator dyeing of natural polymers with Symplocos spicata by metal chelation. Fiber Polym 9:121–127

    CAS  Google Scholar 

  59. Hebeish A, Sharaf S, El-Hady MMA (2011) Ultrasound aided KMnO4-acid systems for bleaching linen fabric. Carbohydr Polym 83:1370–1376

    CAS  Google Scholar 

  60. Yachmenev VG, Blanchard EJ, Lambert AH (2004) Use of ultrasonic energy for intensification of the bio-preparation of greige cotton. Ultrasonics 42:87–91

    CAS  Google Scholar 

  61. Yachmenev VG, Bertoniere NR, Blanchard EJ (2002) Intensification of the bio-processing of cotton textiles by combined enzyme/ultrasound treatment. J Chem Tech Biotech 77:559–567

    CAS  Google Scholar 

  62. Perelshtein I, Applerot G, Perkas N, Grinblat J, Hulla E, Wehrschuetz-Sigl E, Hasmann A, Guebitz G, Gedanken A (2010) Ultrasound radiation as a “throwing stones” technique for the production of antibacterial nanocomposite textiles. ACS Appl Mater Interfaces 2:1999–2004

    CAS  Google Scholar 

  63. Gallego-Juarez JA, Riera E, Acosta V, Rodríguez G, Blanco A (2010) Ultrasonic system for continuous washing of textiles in liquid layers. Ultrason Sonochem 17:234–238

    CAS  Google Scholar 

  64. Gotoh K, Harayama K (2013) Application of ultrasound to textiles washing in aqueous solutions. Ultrason Sonochem 20:747–753

    CAS  Google Scholar 

  65. Wang W-M, Yu B, Zhong C-J (2012) Use of ultrasonic energy in the enzymatic desizing of cotton fabric. J Clean Prod 33:179–182

    Google Scholar 

  66. Abou-Okeil A, El-Shafie A, El Zawahry MM (2010) Ecofriendly laccase–hydrogen peroxide/ultrasound-assisted bleaching of linen fabrics and its influence on dyeing efficiency. Ultrason Sonochem 17:383–390

    CAS  Google Scholar 

  67. Khanjani S, Morsali A, Joo SW (2013) In situ formation deposited ZnO nanoparticles on silk fabrics under ultrasound irradiation. Ultrason Sonochem 20:734–739

    CAS  Google Scholar 

  68. Shahid M (2013) Development of shade on wool with Anar/Pomegranate (Punica granatum) and Gallnut (Quercus infectoria) natural dyes and their characteristics evaluation. Ph.D thesis., Jamia Millia Islamia University, New Delhi, India

    Google Scholar 

  69. Khanjani S, Morsali A (2013) Ultrasound-promoted coating of silk yarn with different morphology of magnesium hydroxide nanostructures. Ultrason Sonochem 20:729–733

    CAS  Google Scholar 

  70. Khanjani S, Morsali A (2013) Ultrasound-assisted coating of silk yarn with sphere-like Mn3O4 nanoparticles. Ultrason Sonochem 20:413–417

    CAS  Google Scholar 

  71. Mansour HF, Heffernan S (2011) Environmental aspects on dyeing silk fabric with Sticta coronata lichen using ultrasonic energy and mild mordants. Clean Technol Environ Policy 13:207–213

    CAS  Google Scholar 

  72. Ahlström L-H, Sparr Eskilsson C, Björklund E (2005) Determination of banned azo dyes in consumer goods. Trends Anal Chem 24:49–56

    Google Scholar 

  73. Islam S, Shahid M, Mohammad F (2013) Perspectives for natural product based agents derived from industrial plants in textile applications—a review. J Clean Prod 57:2–18

    Google Scholar 

  74. Khan MI, Ahmad A, Khan SA, Yusuf M, Shahid M, Manzoor N, Mohammad F (2011) Assessment of antimicrobial activity of Catechu and its dyed substrate. J Clean Prod 19:1385–1394

    CAS  Google Scholar 

  75. Vankar PS, Shanker R, Verma A (2007) Enzymatic natural dyeing of cotton and silk fabrics without metal mordants. J Clean Prod 15:1441–1450

    Google Scholar 

  76. Harifi T, Montazer M (2012) Past, present and future prospects of cotton cross-linking: new insight into nano particles. Carbohydr Polym 88:1125–1140

    CAS  Google Scholar 

  77. Basu G, De SS, Samanta AK (2009) Effect of bio-friendly conditioning agents on jute fibre spinning. Ind Crop Prod 29:281–288

    CAS  Google Scholar 

  78. Liu ZT, Yang Y, Zhang L, Sun P, Liu ZW, Lu J, Tang S (2008) Study on the performance of ramie fiber modified with ethylenediamine. Carbohydr Polym 71:18–25

    CAS  Google Scholar 

  79. van der Werf HMG, Turunen L (2008) The environmental impacts of the production of hemp and flax textile yarn. Ind Crop Prod 27:1–10

    Google Scholar 

  80. Sampaio S, Bishop D, Shen J (2005) Physical and chemical properties of flax fibres from stand-retted crops desiccated at different stages of maturity. Ind Crop Prod 21:275–284

    CAS  Google Scholar 

  81. Yang Y, Reddy N (2013) Potential of using plant proteins and chicken feathers for cotton warp sizing. Cellulose 20:2163–2174

    CAS  Google Scholar 

  82. Zhu Z, Cheng Z (2008) Effect of inorganic phosphates on the adhesion of mono-phosphorylated cornstarch to fibers. Starch 60:315–320

    CAS  Google Scholar 

  83. Zhu Z, Cao S (2004) Modifications to improve the adhesion of crosslinked starch sizes to fiber substrates. Text Res J 74:253–258

    CAS  Google Scholar 

  84. Hebeish A, Higazy A, El-Shafei A (2006) New sizing agents and flocculants derived from chitosan. Starch 58:401–410

    CAS  Google Scholar 

  85. Stegmaier T, Wunderlich W, Hager T, Siddique AB, Sarsour J, Planck H (2008) Chitosan—a sizing agent in fabric production—development and ecological evaluation. CLEAN 36:279–286

    CAS  Google Scholar 

  86. Chen L, Reddy N, Yang Y (2013) Remediation of environmental pollution by substituting poly(vinyl alcohol) with biodegradable warp size from wheat gluten. Environ Sci Tech 47:4505–4511

    CAS  Google Scholar 

  87. Chen L, Reddy N, Yang Y (2013) Soy proteins as environmentally friendly sizing agents to replace poly (vinyl alcohol). J Environ Poll Res 20:6085–6095

    CAS  Google Scholar 

  88. Reddy N, Chen L, Zhang Y, Yang Y (2014) Reducing environmental pollution of the textile industry using keratin as alternative sizing agent to poly(vinyl alcohol). J Clean Prod 65:561–567

    CAS  Google Scholar 

  89. Aly AS, Moustafa AB, Hebeish A (2004) Bio-technological treatment of cellulosic textiles. J Clean Prod 12:697–705

    Google Scholar 

  90. Hebeish A, Hashem M, Shaker N, Ramadan M, El-Sadek B, Hady MA (2009) Effect of post- and pre-crosslinking of cotton fabrics on the efficiency of biofinishing with cellulase enzyme. Carbohydr Polym 78:953–960

    CAS  Google Scholar 

  91. Shen J, Rushforth M, Cavaco-Paulo A, Guebitz G, Lenting H (2007) Development and industrialisation of enzymatic shrink-resist process based on modified proteases for wool machine washability. Enzyme Microb Technol 40:1656–1661

    CAS  Google Scholar 

  92. Angelini LG, Bertoli A, Rolandelli S, Pistelli L (2003) Agronomic potential of Reseda luteola L. as new crop for natural dyes in textiles production. Ind Crops Prod 17:199–207

    CAS  Google Scholar 

  93. Anliker R, Dürig G, Steinle D, Moriconi EJ (1998) List of colorants to be classified as toxic. J Soc Dyers Colour 104:223–225

    Google Scholar 

  94. Erkurt EA, Ünyayar A, Kumbur H (2007) Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochem 42:1429–1435

    CAS  Google Scholar 

  95. Oh SW, Kang MN, Cho CW, Lee MW (1997) Detection of carcinogenic amines from dyestuffs or dyed substrates. Dyes Pigm 33:119–135

    CAS  Google Scholar 

  96. Osman M, Sharaf I, Osman H, El-Khouly Z, Ahmed E (2003) Synthetic organic food colouring agents and their degraded products: effects on human and rat cholinesterases. Br J Biomed Sci 61:128–132

    Google Scholar 

  97. Shahid M, Ahmad A, Yusuf M, Khan MI, Khan SA, Manzoor N, Mohammad F (2012) Dyeing, fastness and antimicrobial properties of woollen yarns dyed with gallnut (Quercus infectoria Oliv.) extract. Dyes Pigm 95:53–61

    CAS  Google Scholar 

  98. Khan SA, Ahmad A, Khan MI, Yusuf M, Shahid M, Manzoor N, Mohammad F (2012) Antimicrobial activity of wool yarn dyed with Rheum emodi L. (Indian Rhubarb). Dyes Pigm 95:206–214

    CAS  Google Scholar 

  99. Yusuf M, Ahmad A, Shahid M, Khan MI, Khan SA, Manzoor N, Mohammad F (2012) Assessment of colorimetric, antibacterial and antifungal properties of woollen yarn dyed with the extract of the leaves of henna (Lawsonia inermis). J Clean Prod 27:42–50

    CAS  Google Scholar 

  100. Grifoni D, Bacci L, Di Lonardo S, Pinelli P, Scardigli A, Camilli F, Sabatini F, Zipoli G, Romani A (2014) UV protective properties of cotton and flax fabrics dyed with multifunctional plant extracts. Dyes Pigm 105:89–96

    CAS  Google Scholar 

  101. Singh R, Jain A, Panwar S, Gupta D, Khare SK (2005) Antimicrobial activity of some natural dyes. Dyes Pigm 66:99–102

    CAS  Google Scholar 

  102. Toussirot M, Nowik W, Hnawia E, Lebouvier N, Hay AE, de la Sayette A, Dijoux-Franca MG, Cardon D, Nour M (2014) Dyeing properties, coloring compounds and antioxidant activity of Hubera nitidissima (Dunal) Chaowasku (Annonaceae). Dyes Pigm 102:278–284

    CAS  Google Scholar 

  103. Hill DJ (1997) Is there a future for natural dyes? Rev Prog Color 27:18–25

    CAS  Google Scholar 

  104. Taylor GW (1986) Natural dyes in textile applications. Rev Prog Color Relat Top 16:53–61

    CAS  Google Scholar 

  105. Joshi M, Ali SW, Purwar R, Rajendran S (2009) Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. Indian J Fibre Text Res 34:295–304

    CAS  Google Scholar 

  106. Haddar W, Ben Ticha M, Guesmi A, Khoffi F, Durand B (2014) A novel approach for a natural dyeing process of cotton fabric with Hibiscus mutabilis (Gulzuba): process development and optimization using statistical analysis. J Clean Prod. http://dx.doi.org/10.1016/j.jclepro.2013.12.066

  107. Haddar W, Elksibi I, Meski N, Farouk Mhenni M (2014) Valorization of the leaves of fennel (Foeniculum vulgare) as natural dyes fixed on modified cotton: A dyeing process optimization based on a response surface methodology. Ind Crops Prod 52:588-596

    Google Scholar 

  108. Poole AJ, Church JS, Huson MG (2008) Environmentally sustainable fibers from regenerated protein. Biomacromolecules 10:1–8

    Google Scholar 

  109. Ghaheh FS, Nateri AS, Mortazavi SM, Abedi D, Mokhtari J (2012) The effect of mordant salts on antibacterial activity of wool fabric dyed with pomegranate and walnut shell extracts. Color Technol 128:473–478

    CAS  Google Scholar 

  110. Hou X, Chen X, Cheng Y, Xu H, Chen L, Yang Y (2013) Dyeing and UV-protection properties of water extracts from orange peel. J Clean Prod 52:410–419

    CAS  Google Scholar 

  111. Rehman F-U, Adeel S, Shahid M, Bhatti IA, Nasir F, Akhtar N, Ahmad Z (2013) Dyeing of γ-irradiated cotton with natural flavonoid dye extracted from irradiated onion shells (Allium cepa) powder. Radiat Phy Chem 92:71–75

    CAS  Google Scholar 

  112. Bechtold T, Mussak R, Mahmud-Ali A, Ganglberger E, Geissler S (2006) Extraction of natural dyes for textile dyeing from coloured plant wastes released from the food and beverage industry. J Sci Food Agric 86:233–242

    CAS  Google Scholar 

  113. İşmal EÖ, Yıldırım L, Özdoğan E (2014) A beneficial approach: the valorisation of an agro-industrial waste; almond shell in conjunction with biomordants. J Clean Prod. http://dx.doi.org/10.1016/j.jclepro.2014.01.055

  114. Bechtold T, Mahmud-Ali A, Mussak R (2007) Anthocyanin dyes extracted from grape pomace for the purpose of textile dyeing. J Sci Food Agric 87:2589–2595

    CAS  Google Scholar 

  115. Meksi N, Haddar W, Hammami S, Mhenni MF (2012) Olive mill wastewater: a potential source of natural dyes for textile dyeing. Ind Crops Prod 40:103–109

    CAS  Google Scholar 

  116. Haddar W, Baaka N, Meksi N, Elksibi I, Farouk Mhenni M (2014) Optimization of an ecofriendly dyeing process using the wastewater of the olive oil industry as natural dyes for acrylic fibres. J Clean Prod 66:546–554

    CAS  Google Scholar 

Download references

Acknowledgments

The author Shahid-ul-Islam is highly grateful to University Grants Commission, Government of India, for financial support provided through BSR Research Fellowship in Science for Meritorious Students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faqeer Mohammad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Shahid-ul-Islam, Mohammad, F. (2014). Emerging Green Technologies and Environment Friendly Products for Sustainable Textiles. In: Muthu, S. (eds) Roadmap to Sustainable Textiles and Clothing. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-110-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-110-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-109-1

  • Online ISBN: 978-981-287-110-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics