Skip to main content

Fuzzy-Rough Discriminative Feature Selection and Classification

  • Chapter
  • First Online:
Computational Intelligence in Multi-Feature Visual Pattern Recognition

Part of the book series: Studies in Computational Intelligence ((SCI,volume 556))

  • 894 Accesses

Abstract

Classification of datasets with multiple features is computationally intensive. Fuzzy-rough set based feature selection and classification requires reduced computational efforts. Lower and upper approximations of fuzzy equivalence classes are useful in finding discriminative features and classification boundaries in a dataset. This chapter discusses a fuzzy-rough single cluster (FRSC) classifier which is a discriminative feature selection and classification algorithm. The FRSC classifier translates each quantitative value of a feature into fuzzy sets of linguistic terms using membership functions and, identifies discriminative features. The membership functions are formed by partitioning the feature space into fuzzy equivalence classes, using feature cluster centers identified through subtractive clustering. Classification rules are generated using fuzzy membership values partitioning the lower and upper approximations. The patterns are classified through a voting process. Both the feature selection and classification algorithms have polynomial time complexity. The algorithm is tested in two types of classification problems, namely, cancer and image-pattern classification. The large number of gene expression profiles and relatively small number of available samples make the feature selection a key step in microarray based cancer classification. The algorithm identified relevant features (predictive genes in the case of cancer data) and provided good classification accuracy, at a less computational cost, with good margin of classification. A comparison of the performance of the FRSC classifier with other relevant classification methods shows the classifier’s better discriminative power.

Research is what I’m doing when I don’t know what I’m doing

Wernher von Braun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The subtractive clustering radius represents the width of the data considered in each step of clustering. A radius within [0.2 0.5] leads to a diameter within [0.4 1.0] and it covers 40–100 % of data width. This is the usual range reported in literature [2]. The number of rules and accuracy decrease with the radius.

  2. 2.

    Refer Appendix-A for an illustration of the formation of fuzzy membership functions, and the calculation of \(\{\mu _{A_{L}}, \mu _{A_{H}}\}\) and \(\{A_L, A_H\}\).

  3. 3.

    The algorithm provides better results when the average value is considered. The other possible values for \(d_{\mu }\) are \(d_{\mu _{A_{L}}}\), \(d_{\mu _{A_{H}}}\) or a weighted average of \(d_{\mu _{A_{L}}}\) and \(d_{\mu _{A_{H}}}\).

  4. 4.

    Voting is positive if the voted class and the actual class are the same. Otherwise it is negative.

  5. 5.

    The list of 55 top ranked genes is available in [9].

  6. 6.

    These genes are listed in the additional material Table S1 of [24].

References

  1. C.C. Chang C.J. Lin, Libsvm: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/cjlin/libsvm/

  2. S. Chiu, Fuzzy model identification based on cluster estimation, J. Int. Fuzzy Syst. 2(3), 18–28 (1994)

    Google Scholar 

  3. R. Fergus, P. Perona, A. Zisserman, Object class recognition by unsupervised scale-invariant learning. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2, (2003), pp. 264–271

    Google Scholar 

  4. A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  5. T.R. Golub, D.K. Slonim, C. Huard, M. Gaasenbeek, P. Tamayo, J.P. Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, E.S. Lander, Cancer program data sets, (1999), http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

  6. T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, E.S. Lander, Molecular classification of cancer: class discovery and class prediction by geneexpression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  7. G.J. Gordon, R.V. Jensen, L. Hsiao, S.R. Gullans, J.E. Blumenstock, S. Ramaswamy, W.G. Richards, D.J. Sugarbaker, R. Bueno, Supplemental information of gordon et al. paper, (2002), http://www.chestsurg.org/publications/2002-microarray.aspx

  8. G.J. Gordon, R.V. Jensen, L. Hsiao, S.R. Gullans, J.E. Blumenstock, S. Ramaswamy, W.G. Richards, D.J. Sugarbaker, R. Bueno, Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 62, 4963–4967 (2002)

    Google Scholar 

  9. T. Jirapech-Umpai, S. Aitken, Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes, BMC Bioinform. 6, 148 (2005)

    Google Scholar 

  10. J. Khan, J.S. Wei, M. Ringner, L.H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C.R. Antonescu, C. Peterson, P.S. Meltzer, Microarray project (2001), http://research.nhgri.nih.gov/microarray/Supplement

  11. J. Khan, J.S. Wei, M. Ringner, L.H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C.R. Antonescu, C. Peterson, P.S. Meltzer, Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7 6, 673–679 (2001)

    Google Scholar 

  12. J. Lu, G. Getz, E. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B.L. Ebert, R.H. Mak, A.A. Ferrando, J.R. Downing, T. Jacks, H.R. Horvitz, T.R. Golub, Micro rna expression profiles classify human cancers, Nature 435, 834–838 (2005)

    Google Scholar 

  13. Z. Pawlak, Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Z. Pawlak, Rough classification, Int. J. Man-Mach. Stud. 20, 469–483 (1984)

    Google Scholar 

  15. P.K Pisharady, Computational intelligence techniques in visual pattern recognition, Ph.D. Thesis, National University of Singapore (August, 2011)

    Google Scholar 

  16. P.K. Pisharady, P. Vadakkepat, A.L. Poh, Fuzzy-rough discriminative feature selection and classification algorithm, with application to microarray and image datasets. Appl. Soft Comput. 11(04), 3429–3440 (2011)

    Article  Google Scholar 

  17. P.K. Pisharady, P. Vadakkepat, A.L. Poh, Hand posture and face recognition using a fuzzy-rough approach. Int. J. Humanoid Rob. 07(03), 331–356 (2010)

    Article  Google Scholar 

  18. S.L. Pomeroy, P. Tamayo, M. Gaasenbeek, L.M. Sturla, M. Angelo, M.E. McLaughlin, J.Y.H. Kim, L.C. Goumnerova, P.M. Black, C. Lau, J.C. Allen, D. Zagzag, J.M. Olson, T. Curran, C. Wetmore, J.A. Biegel11, T. Poggio, S. Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D.N. Louis, J.P. Mesirov, E.S. Lander, and T.R. Golub, Prediction of central nervous system embryonal tumour outcome based on gene expression. Lett. Nat. 415, 436–442 (2002)

    Google Scholar 

  19. T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, T. Poggio, Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Int. 29(3), 411–426 (2007)

    Article  Google Scholar 

  20. T. Serre, L. Wolf, T. Poggio, Object recognition with features inspired by visual cortex. Conference on Computer Vision and Pattern Recognition, ed by C. Schmid, S. Soatto, C. Tomasi, (San Diego, CA, 2005) pp. 994–1000

    Google Scholar 

  21. J. Triesch, C. Malsburg, Sebastien marcel hand posture and gesture datasets: Jochen triesch static hand posture database (1996), http://www.idiap.ch/resource/gestures/

  22. J. Triesch, C. Malsburg, Robust classification of hand postures against complex backgrounds, in Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, (Killington, VT, USA, 1996) pp. 170–175

    Google Scholar 

  23. M. Turk, A. Pentland, Eigenfaces for recognition. J. Cog. Neurosci. 3, 71–86 (1991)

    Article  Google Scholar 

  24. J. Xuan, Y. Wang, Y. Dong, Y. Feng, B. Wang, J. Khan, M. Bakay, Z. Wang, L. Pachman, S. Winokur, Y. Chen, R. Clarke, E. Hoffman, Gene selection for multiclass prediction by weighted fisher criterion, EURASIP J. Bioinform. Syst. Biol. 2007, (2007)

    Google Scholar 

  25. A.L. Zadeh, Fuzzy sets, Inform. Control 8(3), 338–353 (1965)

    Google Scholar 

  26. S. Zhao, E.C.C. Tsang, D. Chen, X. Wang, Building a rule-based classifier-a fuzzy-rough set approach. IEEE Trans. Knowl. Data Eng. 22(5), 624–638 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Figures and tables in this chapter are adapted from Applied Soft Computing, Vol.11, Issue No.4, Pramod Kumar Pisharady, Prahlad Vadakkepat, and Loh Ai Poh, ’Fuzzy-Rough discriminative feature selection and classification algorithm, with application to microarray and image datasets’, Page Nos. 3429–3440, Copyright (2011), with permission from Elsevier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Pisharady .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Pisharady, P.K., Vadakkepat, P., Poh, L.A. (2014). Fuzzy-Rough Discriminative Feature Selection and Classification. In: Computational Intelligence in Multi-Feature Visual Pattern Recognition. Studies in Computational Intelligence, vol 556. Springer, Singapore. https://doi.org/10.1007/978-981-287-056-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-056-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-055-1

  • Online ISBN: 978-981-287-056-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics