Skip to main content

Research Progress of Parallel Robots Based on Machine Vision

  • Conference paper
  • First Online:
Advanced Manufacturing and Automation XII (IWAMA 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 994))

Included in the following conference series:

  • 990 Accesses

Abstract

Aiming at the problems of calibration and moving platform detection in the development and application of parallel robots, this paper systematically demonstrates both the domestic and overseas solutions based on machine vision . Firstly, the development and the existing problems of the research on parallel robots are briefly explained. Secondly, various calibration algorithms of parallel robots based on machine vision and the obtained results are introduced. And then the method of moving platform detection and the experimental results of machine vision are presented. Finally, the whole text is summarized with the prediction on the research directions and difficulties of parallel robots based on machine vision, which provides references for other scholars to further exploration in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stewart, D.: A platform with six degrees of freedom. Inst. Mech. Eng. 180(15), 371–386 (1965)

    Article  Google Scholar 

  2. Hunt, K.H.: Kinematic Geometry of Mechanisms, pp. 304–307. Oxford University Press, New York (1978)

    MATH  Google Scholar 

  3. Hunt, K.H.: Structural kinematics of in-parallel-actuated robot arms. AMSE J. Mech. Transmis. Automat. Des. 105(4), 705–712 (1983)

    Article  Google Scholar 

  4. Mac Callion, H., Pham, D.T.: The analysis of a six degree of freedom work station for mechanized assembly. In: Proceedings of 5th World Congress on Theory of Machines and Mechanisms, pp. 611–616 (1979)

    Google Scholar 

  5. Zhen, H., Lingfu, K., Yuefa, F.: Parallel Robot Mechanism Theory and Control, pp. 1–394. Machinery Industry Press, Beijing (1997)

    Google Scholar 

  6. Jinsong, W., Liwen, G., Liping, W., Tiemin, L.: Research on innovative design of parallel robot mechanism configuration. Chin. J. Mech. Eng. 11, 7–12 (2004)

    Google Scholar 

  7. Xinjun, L., Jinsong, W., Jianfeng, L., Feng, G.: Positive and negative solutions and workspace analysis of a new type of spatial 3-DOF parallel mechanism. Chin. J. Mech. Eng. 10, 36–39 (2001)

    Google Scholar 

  8. Meng, Q., Xie, F., Liu, X.J.: Motion–force interaction performance analyses of redundantly actuated and overconstrained parallel robots with closed-loop subchains. J. Mech. Des. 142(10), 1–20 (2020)

    Article  Google Scholar 

  9. Meng, Q., Xie, F., Liu, X.J., et al.: An evaluation approach for motion-force interaction performance of parallel manipulators with closed-loop passive limbs. Mech. Mach. Theory 149, 103844 (2020)

    Article  Google Scholar 

  10. Jingfeng, H., Zhengmao, Y., Hongzhou, J., Dacheng, C., Junwei, H.: Coupling analysis of parallel robots based on joint space model. Chin. J. Mech. Eng. 06, 161–165 (2006)

    Google Scholar 

  11. Xiufeng, Z., Lining, S.: Research on control algorithm and control system of precision parallel robot. Chin. J. Mech. Eng. 04, 177–180 (2004)

    Google Scholar 

  12. Jie, Z., Yanhe, Z., Hegao, C.: Delta parallel robot kinematics positive solution geometric solution. J. Harbin Inst. Technol. 01, 25–27 (2003)

    Google Scholar 

  13. Xuesheng, C., Zaili, C., Minxiu, K., Tao, X.: Exact solution of forward kinematics of 6-SPS parallel robot based on neural network. J. Harbin Inst. Technol. 01, 120–124 (2002)

    Google Scholar 

  14. Xiulong, C., Yongsheng, Z., Yu, D.: Error modeling and simulation of a new type of parallel robot coordinate measuring machine. Comput. Integr. Manuf. Syst. 14(3), 477–481+486 (2008)

    Google Scholar 

  15. Yundou, X., Shaoshuai, T., Zengzhao, W., Liu, Y., Jiantao, Y., Yongsheng, Z.: Analysis of motion principle of parallel mechanism with compound rotary linear drive unit. J. Yanshan Univ. 44(03), 198–202 (2020)

    Google Scholar 

  16. Yongquan, L., Pengtao, W., Yang, Z., Lijie, Z.: Dynamic parameter identification and control of spherical two-degree-of-freedom redundant drive parallel robot system. China Mech. Eng. 30(16), 1967–1975 (2019)

    Google Scholar 

  17. Yonggang. Y.: Research on the key technology of 6-PRRS parallel robot. Harbin Institute of Technology (2008)

    Google Scholar 

  18. Ke, F., Xie, J., Chen, Y., et al.: A fast and accurate calibration method for the structured light system based on trapezoidal phase-shifting pattern. Optik – Int. J. Light Electr. Opt. 125(18), 5249–5253 (2014)

    Article  Google Scholar 

  19. Ke, F., Xie, J., Chen, Y.: A flexible and high precision calibration method for the structured light vision system. Optik – Int. J. Light Electr. Opt. 127(1), 310–314 (2016)

    Article  Google Scholar 

  20. Fengkai, K., Youping, C.: Camera internal and external parameter calibration based on convex relaxation optimization algorithm. China Mech. Eng. 27(5), 634–657 (2016)

    Google Scholar 

  21. Yiwen. D.: Research on visual servo detection method in complex environment and its application in parallel robots. Donghua University (2016)

    Google Scholar 

  22. Hongfeng, Z., Shoudong, N., Liang, Z., Meng, Z.: Camera calibration optimization method based on sparrow search algorithm. Adv. Lasers Optoelectr. 58(22), 384–390 (2021)

    Google Scholar 

  23. Siyong, F., Lushen, W., Huawei, C., et al.: Camera calibration with multiple distortion factors. J. Instrum. 39(02),:248–256 (2018)

    Google Scholar 

  24. Ming, T., Feipeng, D.: Multi-camera calibration method based on grating projection. Chin. J. Instrum. 39(02), 2149–2155 (2016)

    Google Scholar 

  25. Song, X., Xiuxia, S., Xi, L., Ming, C.: Geometric method for camera self-calibration based on rectangle. J. Opt. 34(11), 233–246 (2014)

    Google Scholar 

  26. Yongquan, L., Haochen, W., Yang, Z., et al.: A parallel robot calibration method based on hand-eye vision. China Mech. Eng. 31(06), 722–730+755 (2020)

    Google Scholar 

  27. Mendikute, A., Leizea, I., Yagüe-Fabra, J.A., et al. Self-calibration technique for on-machine spindle-mounted vision systems. Measurement 113, 71–81 (2017)

    Google Scholar 

  28. Palmieri, G., Palpacelli, M.C., Carbonari, L., et al.: Vision-based kinematic calibration of a small-scale spherical parallel kinematic machine. Robot. Comput. Integr. Manuf. 49(Feb.), 162- 169 (2018)

    Google Scholar 

  29. Liqiang. Z.: Binocular active vision monitoring platform and theoretical research of parallel robots. Yanshan University (2010)

    Google Scholar 

  30. Jun, L.: Research on pose estimation and control of mobile robot platform on uneven ground. Nanjing University of Science and Technology (2006)

    Google Scholar 

  31. Shuping. Z.: Research on the pose detection method of parallel robots based on vision. Donghua University (2010)

    Google Scholar 

  32. Zhang, S., Ding, Y., Hao, K.: An efficient two-stepsolution for pose identification of a parallel manipulator, Patten Recogn. Lett. Revised

    Google Scholar 

  33. Zhang, S., Ding, Y., Hao, K.: Identification of a parallel manipulator's pose using a parallelogram. In: 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, December 16–18, 2009, pp. 6023–6027 (2009)

    Google Scholar 

  34. Shuping, Z., Yongsheng, D., Kuangrong, H., Difei, W.: Position and orientation detection of a large-load test platform with six degrees of freedom based on stereo vision. Comput. Appl. Res. 25(6), 1744–1746 (2008)

    Google Scholar 

  35. Zhang, S., Ding, Y., Hao, K.: An immune evolutionary algorithm based pose estimation method for parallel manipulator. In: 2009 World Summit on Genetic and Evolutionary Computation (2009 GEC Summit), Shanghai, 12–14 June 2009, pp. 745–750 (2009)

    Google Scholar 

  36. Shuping, Z., Yongsheng, D., Kuangrong, H.: Pose estimation of parallel robots based on immune evolution. Comput. Eng. Appl. 46(34), 11–14 (2010)

    Google Scholar 

  37. Dou, Y., et al.: A meanshift-based feature descriptor for wide baseline stereo matching. Math. Probl. Eng. 2015(7), 1–14 (2015)

    Google Scholar 

  38. Dou, Y., Hao, K., Ding, Y.: A short step affine transformation Sobel algorithm based image edge detection in low illumination. In: Proceeding of the CAC (2015)

    Google Scholar 

  39. Zhang, W., Mei, J., Ding, Y., et al.: Angle recognition algorithm based on discrete series data of object-boundary in polar coordinate. Optik-Int. J. Light Electr. Opt. 124(12), 1273–1277 (2013)

    Article  Google Scholar 

  40. Zhang, W., Mei, J., Ding, Y.: Design and development of a high speed sorting system based on machine vision guiding. Phys. Procedia 25, 1955–1965 (2010)

    Google Scholar 

  41. Zhao, L., Kong, L., Qiao, X., Zhou, Y.: System calibration and error rectification of binocular active visual platform for parallel mechanism. In: Xiong, C., Huang, Y., Xiong, Y., Liu, H. (eds.) ICIRA 2008. LNCS (LNAI), vol. 5314, pp. 734–743. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88513-9_79

    Chapter  Google Scholar 

  42. Zhao, L., Kong, L., Wang, Y.: Error analysis of binocular active hand-eye visual system on parallel mechanisms. In: Proceedings of the 2008 IEEE International Conference on Information and Automation (ICIA 2008), Zhangjiajie, Hunan, China. 20–23 June 2008, pp. 95–100 (2008)

    Google Scholar 

  43. Zhao, L., Kong, L., Jing, R., Zhou. Y.: Measuring structure parameters and pulse equivalents of a double-chained visual mechanism on a circular orbit. In: Proceedings of the 2009 IEEE International Conference on Information and Automation (ICIA 2009), Zhuhai, Guangdong, China 22–25 June 2009, pp. 795–800 (2009n)

    Google Scholar 

  44. Liqiang, Z., Yanhong, Z., Lingfu, K., Xiaoyong, Q.: Analysis of rigid body target pose and motion parameters based on circular truncated target. China Mech. Eng. 20(21), 2531–2535 (2009)

    Google Scholar 

  45. Ying, W., Lingfu, K., Yueming, W., Liqiang, Z.: Research on Mechanical error correction method of active vision monitoring platform. China Mech. Eng. 13, 1523–1527 (2008)

    Google Scholar 

  46. Yueming, W., Lingfu, K., Liqiang, Z.: Research on the visual positioning of the parallel robot’s pose. Inner Mongolia Univ. Sci. Technol. 02, 165–168 (2008)

    Google Scholar 

  47. Lingfu, K., Yueming, W., Liqiang, Z.: Research on the binocular active vision target positioning of parallel robots. Comput. Integr. Manuf. Syst. 11, 2284–2288 (2007)

    Google Scholar 

  48. Ke, F., Xie, J., Chen, Y, et al.: Global rotation estimation for stereo camera systems. Optik – Int. J. Light Electr. Opt. 126, 4022–4025 (2015)

    Google Scholar 

  49. Fengkai. K.: Research and system implementation of multi-eye vision detection algorithm for robots. Huazhong University of Science and Technology (2016)

    Google Scholar 

  50. Hong, Y., Weiwei, S., Bin, Z., et al.: Trajectory tracking control of rope-pulled parallel robots based on high-speed vision. Chin. J. Mech. Eng. 55(05), 19–26 (2019)

    Google Scholar 

  51. Jianlin, C., Yongsheng, D., Kuangrong, H., Shuping, Z.: Visual pose detection of parallel robots based on target tracking. Comput. Eng. 35(18), 200–202+205 (2009)

    Google Scholar 

  52. Qian, Z., Guoqin, G.: Parallel robot string fruit grasping model and grasping pose calculation. Chin. J. Agric. Eng. 35(23), 37–47 (2019)

    Google Scholar 

  53. Yabin, D., Jiangping, M., Wenchang, Z., et al.: Detection of terminal pose of parallel robot based on monocular vision. Chin. J. Mech. Eng. 50(21), 174–179 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, H., Wang, C. (2023). Research Progress of Parallel Robots Based on Machine Vision. In: Wang, Y., Yu, T., Wang, K. (eds) Advanced Manufacturing and Automation XII. IWAMA 2022. Lecture Notes in Electrical Engineering, vol 994. Springer, Singapore. https://doi.org/10.1007/978-981-19-9338-1_19

Download citation

Publish with us

Policies and ethics