Skip to main content

State-of-the-Art DCN Topologies

  • Chapter
  • First Online:
Data Center Networking
  • 600 Accesses

Abstract

The basic design goal of a DCN is to interconnect massive servers and devices with specific network topology, thereby achieving a comprehensive advantage in terms of networked computing and networked storage. The network topology plays a critical role in the DCN performance. Therefore, this chapter summarizes the latest DCN topologies and compares them in terms of construction rules, routing algorithms, network performance, and beyond. Moreover, we propose a new taxonomy that divides current DCN topologies into five categories: switch-centric, server-centric, modular, random, and wireless topologies. Finally, we outline the evolution and future trends of DCN topology designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li D, Chen G, Ren F, et al. Data Center Network Research Progress and Trends [J]. Chinese Journal of Computers, 2014, 37(2): 259–274.

    Google Scholar 

  2. Prasad R, Dovrolis C, Murray M, et al. Bandwidth estimation: metrics, measurement techniques, and tools [J]. IEEE Network, 2003, 17(6): 27–35.

    Article  Google Scholar 

  3. Maltz D A. Challenges in cloud scale data centers [C]. In Proc. of ACM SIGMETRICS, Pittsburgh, USA, 2013: 3–4.

    Google Scholar 

  4. Wu X, Turner D, Chen C C, et al. Netpilot: automating datacenter network failure mitigation [J]. ACM SIGCOMM Computer Communication Review, 2012, 42(4): 419–430.

    Article  Google Scholar 

  5. Greenberg A, Hamilton J, Maltz D A, et al. The cost of a cloud: research problems in data center networks [J]. ACM SIGCOMM Computer Communication Review, 2008, 39(1): 68–73.

    Article  Google Scholar 

  6. Bostoen T, Mullender S, Berbers Y. Power-reduction techniques for data-center storage systems [J]. ACM Computing Surveys (CSUR), 2013, 45(3): 33.

    Article  Google Scholar 

  7. Ranachandran K, Kokku R, Mahindra R, et al. 60 GHz data-center networking: wireless=> worryless [J]. NEC Laboratories America, Inc., Tech. Rep., 2008.

    Google Scholar 

  8. Kedar D, Arnon S. Urban optical wireless communication networks: the main challenges and possible solutions [J]. Communications Magazine, IEEE, 2004, 42(5): S2–S7.

    Article  Google Scholar 

  9. Al-Fares M, Loukissas A, Vahdat A. A scalable, commodity data center network architecture [J]. ACM SIGCOMM Computer Communication Review, 2008, 38(4): 63–74.

    Article  Google Scholar 

  10. Niranjan Mysore R, Pamboris A, Farrington N, et al. Portland: a scalable fault-tolerant layer 2 data center network fabric [J]. ACM SIGCOMM Computer Communication Review, 2009, 39(4): 39–50.

    Article  Google Scholar 

  11. Greenberg A, Hamilton J R, Jain N, et al. VL2: a scalable and flexible data center network [J]. ACM SIGCOMM Computer Communication Review, 2009, 39(4):51–62.

    Article  Google Scholar 

  12. Wang C, Wang C, Wang X, et al. Data Center Network Architecture Design towards Cloud Computing [J]. Computer Research and Development, 2012, 49(2): 286–293.

    Google Scholar 

  13. Liu V, Halperin D, Krishnamurthy A, et al. F10: A fault-tolerant engineered network [C]. In Proc. of 10th NSDI, Lombard, USA, 2013: 399–412.

    Google Scholar 

  14. Abts D, Marty M R, Wells P M, et al. Energy proportional datacenter networks [J]. ACM SIGARCH Computer Architecture News, 2010, 38(3): 338–347.

    Article  Google Scholar 

  15. Ahn J H, Binkert N, Davis A, et al. HyperX: topology, routing, and packaging of efficient large-scale networks [C]. In Proc. of SC, New York, USA, 2009: 41.

    Google Scholar 

  16. Farrington N, Porter G, Radhakrishnan S, et al. Helios: a hybrid electrical/optical switch architecture for modular data centers [J]. ACM SIGCOMM Computer Communication Review, 2011, 41(4): 339–350.

    Article  Google Scholar 

  17. Wang G, Andersen D G, Kaminsky M, et al. C-Through: Part-Time Optics in Data Centers. ACM SIGCOMM Computer Communication Review [J]. 2010, 40(4): 327–338.

    Google Scholar 

  18. Chen K, Singla A, Singh A, et al. OSA: an optical switching architecture for data center networks with unprecedented flexibility [J]. IEEE/ACM Transactions on Networking, 2014, 22(2): 498–511.

    Article  Google Scholar 

  19. Wang H, Xia Y, Bergman K, et al. Rethinking the physical layer of data center networks of the next decade: using optics to enable efficient*-cast connectivity [J]. ACM SIGCOMM Computer Communication Review, 2013, 43(3): 52–58.

    Article  Google Scholar 

  20. It’s Microsoft vs. the professors with competing data center architectures [EB/OL]. [2016-01-18]. http://www.networkworld.com/news/2009/082009-microsoft-sigcomm.html?page=2.

  21. Bhuyan L N, Agrawal D P. Generalized hypercube and hyperbus structures for a computer network [J]. IEEE Transactions on Computer, 1984, 100(4): 323–333.

    Article  Google Scholar 

  22. Luo L, Guo D, Li W, et al. Compound graph based hybrid data center topologies [J]. Frontiers of Computer Science, 2015, 9(6): 860–874.

    Article  Google Scholar 

  23. Al-Fares M, Radhakrishnan S, Raghavan B, et al. Hedera: Dynamic Flow Scheduling for Data Center Networks [C]. In Proc. of 7th USENIX NSDI, San Jose, USA, 2010.

    Google Scholar 

  24. Guo C, Wu H, Tan K, et al. Dcell: a scalable and fault-tolerant network structure for data centers [J]. ACM SIGCOMM Computer Communication Review, 2008, 38(4): 75–86.

    Article  Google Scholar 

  25. Li D, Guo C, Wu H, et al. FiConn: Using backup port for server interconnection in data centers [C]. In Proc. of 28th IEEE INFOCOM, Rio de Janeiro, Brazil, 2009: 2276–2285.

    Google Scholar 

  26. Guo D, Chen T, Li D, et al. Expandable and cost-effective network structures for data centers using dual-port servers [J]. IEEE Transactions on Computers, 2013, 62(7): 1303–1317.

    Article  MathSciNet  Google Scholar 

  27. Guo C, Lu G, Li D, et al. BCube: a high performance, server-centric network architecture for modular data centers [J]. ACM SIGCOMM Computer Communication Review, 2009, 39(4): 63–74.

    Article  Google Scholar 

  28. Abu-Libdeh H, Costa P, Rowstron A, et al. Symbiotic routing in future data centers [J]. ACM SIGCOMM Computer Communication Review, 2011, 41(4): 51–62.

    Article  Google Scholar 

  29. Liu X, Yang S, Guo L, et al. Snowflake: a new-type network structure of data center [J]. Chinese Journal of Computers, 2011, 34(1): 76–86.

    Article  Google Scholar 

  30. Lapidus M L, Pearse E P J. A tube formula for the Koch snowflake curve, with applications to complex dimensions [J]. Journal of the London Mathematical Society, 2006, 74(02): 397–414.

    Article  MathSciNet  Google Scholar 

  31. Hamilton J. Architecture for modular data centers [C]. In Proc. of 3th CIDR, California, USA, 2007.

    Google Scholar 

  32. Guo D, Li C, Wu J. DCube: A family of network structures for containerized data centers using dual-port servers [J]. Computer Communications, 2014, 53: 13–25.

    Article  Google Scholar 

  33. Wu H, Lu G, Li D, et al. MDCube: a high performance network structure for modular data center interconnection [C]. In Proc. of 5th ACM CoNEXT, Rome, Italy, 2009: 25–36.

    Google Scholar 

  34. Li D, Xu M, Zhao H, et al. Building mega data center from heterogeneous containers [C]. In Proc. of 19th IEEE ICNP, Vancouver, Canada, 2011: 256–265.

    Google Scholar 

  35. Erdos P, Renyi A. On random graphs. Publ. Math. Debrecen, 1959, 6: 290–297.

    MathSciNet  MATH  Google Scholar 

  36. Erdos P, Renyi A. On the evolution of random graphs [J]. Publ. Math. Inst. Hung. Acad. Sci, 1976, 2: 482–525.

    Google Scholar 

  37. Shin J Y, Wong B, Sirer E G. Small-world datacenters [C]. In Proc of 2nd ACM SOCC, Cascais, Portugal, 2011: 1–13.

    Google Scholar 

  38. Singla A, Hong C Y, Popa L, et al. Jellyfish: Networking data centers randomly [C]. In Proc. of 9th USENIX NSDI, San Jose, USA, 2012: 17–17.

    Google Scholar 

  39. Barabási A L, Albert R. Emergence of scaling in random networks [J]. Science, 1999, 286(5439): 509–512.

    Article  MathSciNet  Google Scholar 

  40. Watts D J, Strogatz S H. Collective dynamics of small-world networks [J]. Nature, 1998, 393(6684): 440–442.

    Article  Google Scholar 

  41. Kleinberg J. The small-world phenomenon: An algorithmic perspective [J]. In Proc. of 32th STOC, Portland, USA, 2000: 163–170.

    Google Scholar 

  42. Hamedazimi N, Gupta H, Sekar V, et al. Patch panels in the sky: a case for free-space optics in data centers [C]. In Proc. of 12th ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets), Hong Kong, China, 2013: 1–7.

    Google Scholar 

  43. Van Veen B D, Buckley K M. Beamforming: A versatile approach to spatial filtering [J]. IEEE ASSP Magazine, 1988, 5(2): 4–24.

    Article  Google Scholar 

  44. Sylvester J J. On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics, with three appendices [J]. American Journal of Mathematics, 1878, 1(1): 64–104.

    Article  MathSciNet  Google Scholar 

  45. Peng L. Research on wireless P2P overlay model and key technologies based on Cayley graphs [D]. South China University of Technology, 2011.

    Google Scholar 

  46. Liang H. Topology Construction and Resource Locating of Structured P2P Overlay Network Based Cayley Graph [D], South China University of Technology, 2012.

    Google Scholar 

  47. Shin J Y, Sirer E G, Weatherspoon H, et al. On the feasibility of completely wirelesss datacenters [J]. IEEE/ACM Transactions on Networking (TON), 2013, 21(5): 1666–1679.

    Article  Google Scholar 

  48. Switchable Mirror/Switchable Glass [EB/OL]. [2016-01-18]. http://kentoptronics.com/switchable.html.

  49. Burchardt H, Serafimovski N, Tsonev D, et al. VLC: Beyond point-to-point communication [J]. IEEE Communications Magazine, 2014, 52(7): 98–105.

    Article  Google Scholar 

  50. McKeown N, Anderson T, Balakrishnan H, et al. OpenFlow: enabling innovation in campus networks [J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 69–74.

    Article  Google Scholar 

  51. The Software-Definedd-Data-Center (SDDC): Concept Or Reality [EB/OL]. [2016-01-18]. http://blogs.softchoice.com/advisor/ssn/the-software-defined-data-center-sddc-concept-or-reality-vmware/.

  52. Jia W-K. A Scalable Multicast Source Routing Architecture for Data Center Networks [J]. IEEE Journal on Selected Areas in Communications, 2014, 32(1):116–123.

    Article  Google Scholar 

  53. Lester A, Tang Y, Gyires T. Prioritized Adaptive Max-Min Fair Residual Bandwidth Allocation for Software-Defined Data Center Networks [C]. In Proc. of 13th ICN, Nice, France, 2014: 198–203.

    Google Scholar 

  54. Szyrkowiec T, Autenrieth A, Gunning P, et al. First field demonstration of cloud datacenter workflow automation employing dynamic optical transport network resources under OpenStack and OpenFlow orchestration [J]. Optics Express, 2014, 22(3): 2595–2602.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deke Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, D. (2022). State-of-the-Art DCN Topologies. In: Data Center Networking. Springer, Singapore. https://doi.org/10.1007/978-981-16-9368-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9368-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9367-0

  • Online ISBN: 978-981-16-9368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics