Skip to main content
  • 1233 Accesses

Abstract

Background activity refers to the brain’s electrical activity that is recorded when the subject is in a normal or pathological basic state. Abnormal background activities include reduction or disappearance of normal brain wave activity, changes in the frequency of brain electrical activity (increased slow waves or increased fast waves), changes in rhythm (absence of normal rhythm or abnormal rhythmic activity), changes in amplitude (significant increase or decrease), obvious waveform distortion (e.g., polymorphic slow waves), etc., as well as abnormal spatial and temporal distribution of brain electrical activity. Abnormal background activity is a nonspecific abnormality that is related to the severity of diffuse or local brain dysfunction but lacks the specificity of etiology or pathology. Background activity analysis in ICU patients is different from that of non-ICU patients. It has particularity and complexity, especially in patients with impaired consciousness and ICU patients who cannot record awake patterns. The judgment of their background activities also needs to consider the symmetry, continuity, and reactivity of background activities. This chapter describes in detail the related concepts and interpretation methods of EEG symmetry, continuity, and reactivity in combination with illustrations. At the same time, it introduces its clinical guidance value for the evaluation of brain function and prognosis of critically ill patients, which lays the foundation for EEG analysis of critically ill patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirsch LJ, LaRoche SM, Gaspard N, et al. American clinical neurophysiology society’s standardized critical care EEG terminology: 2012 version. J Clin Neurophysiol. 2013;30(1):1–27.

    Article  CAS  PubMed  Google Scholar 

  2. Kharoshankaya L, Filan PM, Bogue CO, et al. Global suppression of electrocortical activity in unilateral perinatal thalamic stroke. Dev Med Child Neurol. 2014;56(7):695–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tecchio F, Zappasodi F, Pasqualetti P, et al. Rhythmic brain activity at rest from rolandic areas in acute mono-hemispheric stroke: a magnetoencephalographic study. NeuroImage. 2005;28(1):72–83.

    Article  PubMed  Google Scholar 

  4. Lavy S, Melamed E, Portnoy Z. The effect of cerebral infarction on the regional cerebral blood flow of the contralateral hemisphere. Stroke. 1975;6(2):160–3.

    Article  CAS  PubMed  Google Scholar 

  5. Diedler J, Sykora M, Bast T, et al. Quantitative EEG correlates of low cerebral perfusion in severe stroke. Neurocrit Care. 2009;11(2):210–6.

    Article  PubMed  Google Scholar 

  6. Petty GW, Labar DR, Fisch BJ, et al. Electroencephalography in lacunar infarction. J Neurol Sci. 1995;134(1–2):47–50.

    Article  CAS  PubMed  Google Scholar 

  7. Macdonell RA, Donnan GA, Bladin PF, et al. The electroencephalogram and acute ischemic stroke. Distinguishing cortical from lacunar infarction. Arch Neurol. 1988;45(5):520–4.

    Article  CAS  PubMed  Google Scholar 

  8. COHN R, RAINES GN, Et A. Cerebral vascular lesions; electroencephalographic and neuropathologic correlations. Arch Neurol Psychiatr. 1948;60(2):165–81.

    Article  CAS  Google Scholar 

  9. Schneider AL, Jordan KG. Regional attenuation without delta (RAWOD): a distinctive EEG pattern that can aid in the diagnosis and management of severe acute ischemic stroke. Am J Electroneurodiagnostic Technol. 2005;45(2):102–17.

    Article  PubMed  Google Scholar 

  10. Amrein I, Palvolgyi L, Debreczeni R, et al. Effect of mental arithmetic and verbal fluency on blood flow velocity in the middle cerebral arteries. Ideggyogy Sz. 2004;57(1–2):23–9.

    PubMed  Google Scholar 

  11. Sinkin MV, Kaimovsky IL, Komoltsev IG, et al. Electroencephalography in acute stroke. Zh Nevrol Psikhiatr Im S S Korsakova. 2020;120(8. Vyp. 2):10–6.

    Google Scholar 

  12. Nazish S, Zafar A, Shariff E, et al. Clinical correlates of electroencephalographic patterns in critically ill patients. Clin EEG Neurosci. 2020:1428873148.

    Google Scholar 

  13. Bentes C, Martins H, Peralta AR, et al. Early EEG predicts poststroke epilepsy. Epilepsia Open. 2018;3(2):203–12.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cobb WA, Guiloff RJ, Cast J. Breach rhythm: the EEG related to skull defects. Electroencephalogr Clin Neurophysiol. 1979;47(3):251–71.

    Article  CAS  PubMed  Google Scholar 

  15. Lee JW, Tanaka N, Shiraishi H, et al. Evaluation of postoperative sharp waveforms through EEG and magnetoencephalography. J Clin Neurophysiol. 2010;27(1):7–11.

    Article  PubMed  Google Scholar 

  16. Brigo F, Cicero R, Fiaschi A, et al. The breach rhythm. Clin Neurophysiol. 2011;122(11):2116–20.

    Article  PubMed  Google Scholar 

  17. Kadian R, Vemireddy LP, Kumar A. Breach rhythm. 2020.

    Google Scholar 

  18. Mari-Acevedo J, Yelvington K, Tatum WO. Normal EEG variants. Handb Clin Neurol. 2019;160:143–60.

    Article  PubMed  Google Scholar 

  19. Niedermeyer E. The “third rhythm”: further observations. Clin Electroencephalogr. 1991;22(2):83–96.

    Article  CAS  PubMed  Google Scholar 

  20. Shinomiya S, Fukunaga T, Nagata K. Clinical aspects of the “third rhythm” of the temporal lobe. Clin Electroencephalogr. 1999;30(4):136–42.

    Article  CAS  PubMed  Google Scholar 

  21. van Doorn J, Cherian PJ. Neurological picture. Breach rhythm related to a solitary skull lesion caused by multiple myeloma. J Neurol Neurosurg Psychiatry. 2008;79(7):819.

    Google Scholar 

  22. Krause-Titz UR, Warneke N, Freitag-Wolf S, et al. Factors influencing the outcome (GOS) in reconstructive cranioplasty. Neurosurg Rev. 2016;39(1):133–9.

    Article  CAS  PubMed  Google Scholar 

  23. Khader BA, Towler MR. Materials and techniques used in cranioplasty fixation: a review. Mater Sci Eng C Mater Biol Appl. 2016;66:315–22.

    Article  CAS  PubMed  Google Scholar 

  24. Huang J, Peng Y, Yang J, et al. A study on correlation of pedestrian head injuries with physical parameters using in-depth traffic accident data and mathematical models. Accid Anal Prev. 2018;119:91–103.

    Article  PubMed  Google Scholar 

  25. Mader EJ, Miller D, Toler JM, et al. Focal epileptiform discharges can mimic electrode artifacts when recorded on the scalp near a skull defect. J Investig Med High Impact Case Rep. 2018;6:1559706839.

    Google Scholar 

  26. Lau S, Flemming L, Haueisen J. Corrigendum to “Magnetoencephalography signals are influenced by skull defects” [Clin. Neurophysiol. 125 (2014) 1653–1662]. Clin Neurophysiol. 2017;128(6):1116.

    Google Scholar 

  27. Hunter A, Bordelon Y, Cook I, et al. QEEG measures in Huntington’s disease: a pilot study. PLoS Curr. 2010;2:N1192.

    Google Scholar 

  28. Bonanni L, Franciotti R, Nobili F, et al. EEG markers of dementia with Lewy bodies: a multicenter cohort study. J Alzheimers Dis. 2016;54(4):1649–57.

    Article  PubMed  Google Scholar 

  29. Franciotti R, Pilotto A, Moretti DV, et al. Anterior EEG slowing in dementia with Lewy bodies: a multicenter European cohort study. Neurobiol Aging. 2020;93:55–60.

    Article  PubMed  Google Scholar 

  30. Werth E, Achermann P, Borbely AA. Brain topography of the human sleep EEG: antero-posterior shifts of spectral power. Neuroreport. 1996;8(1):123–7.

    Article  CAS  PubMed  Google Scholar 

  31. De Gennaro L, Ferrara M, Curcio G, et al. Cortical EEG topography of REM onset: the posterior dominance of middle and high frequencies. Clin Neurophysiol. 2002;113(4):561–70.

    Article  PubMed  Google Scholar 

  32. Rundgren M, Rosen I, Friberg H. Amplitude-integrated EEG (aEEG) predicts outcome after cardiac arrest and induced hypothermia. Intensive Care Med. 2006;32(6):836–42.

    Article  PubMed  Google Scholar 

  33. Oh SH, Park KN, Kim YM, et al. The prognostic value of continuous amplitude-integrated electroencephalogram applied immediately after return of spontaneous circulation in therapeutic hypothermia-treated cardiac arrest patients. Resuscitation. 2013;84(2):200–5.

    Article  PubMed  Google Scholar 

  34. Sugiyama K, Kashiura M, Akashi A, et al. Prognostic value of the recovery time of continuous normal voltage in amplitude-integrated electroencephalography in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia: a retrospective study. J Intensive Care. 2016;4:25.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Oh SH, Park KN, Shon YM, et al. Continuous amplitude-integrated electroencephalographic monitoring is a useful prognostic tool for hypothermia-treated cardiac arrest patients. Circulation. 2015;132(12):1094–103.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Benarous L, Gavaret M, Soda DM, et al. Sources of interrater variability and prognostic value of standardized EEG features in post-anoxic coma after resuscitated cardiac arrest. Clin Neurophysiol Pract. 2019;4:20–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Westhall E, Rossetti AO, van Rootselaar AF, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology. 2016;86(16):1482–90.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hawkes MA, Rabinstein AA. Neurological prognostication after cardiac arrest in the era of target temperature management. Curr Neurol Neurosci Rep. 2019;19(2):10.

    Article  PubMed  Google Scholar 

  39. Guedes B, Manita M, Rita PA, et al. Prognostic significance of specific EEG patterns after cardiac arrest in a Lisbon cohort. Clin Neurophysiol Pract. 2020;5:147–51.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pati S, McClain L, Moura L, et al. Accuracy of limited-montage electroencephalography in monitoring postanoxic comatose patients. Clin EEG Neurosci. 2017;48(6):422–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lamartine MM, Taccone FS, Depondt C, et al. The prognostic value of 48-h continuous EEG during therapeutic hypothermia after cardiac arrest. Neurocrit Care. 2016;24(2):153–62.

    Article  Google Scholar 

  42. Sadaka F, Doerr D, Hindia J, et al. Continuous electroencephalogram in comatose postcardiac arrest syndrome patients treated with therapeutic hypothermia: outcome prediction study. J Intensive Care Med. 2015;30(5):292–6.

    Article  PubMed  Google Scholar 

  43. Sivaraju A, Gilmore EJ, Wira CR, et al. Prognostication of post-cardiac arrest coma: early clinical and electroencephalographic predictors of outcome. Intensive Care Med. 2015;41(7):1264–72.

    Article  PubMed  Google Scholar 

  44. Sugiyama K, Miyazaki K, Ishida T, et al. Categorization of post-cardiac arrest patients according to the pattern of amplitude-integrated electroencephalography after return of spontaneous circulation. Crit Care. 2018;22(1):226.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Thenayan EA, Savard M, Sharpe MD, et al. Electroencephalogram for prognosis after cardiac arrest. J Crit Care. 2010;25(2):300–4.

    Article  PubMed  Google Scholar 

  46. Hofmeijer J, Tjepkema-Cloostermans MC, van Putten MJ. Burst-suppression with identical bursts: a distinct EEG pattern with poor outcome in postanoxic coma. Clin Neurophysiol. 2014;125(5):947–54.

    Article  PubMed  Google Scholar 

  47. Rossetti AO, Carrera E, Oddo M. Early EEG correlates of neuronal injury after brain anoxia. Neurology. 2012;78(11):796–802.

    Article  CAS  PubMed  Google Scholar 

  48. Cloostermans MC, van Meulen FB, Eertman CJ, et al. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit Care Med. 2012;40(10):2867–75.

    Article  PubMed  Google Scholar 

  49. Nolan JP, Soar J, Cariou A, et al. European resuscitation council and european society of intensive care medicine guidelines for post-resuscitation care 2015: Section 5 of the European resuscitation council guidelines for resuscitation 2015. Resuscitation. 2015(95):202–22.

    Google Scholar 

  50. Amorim E, Rittenberger JC, Baldwin ME, et al. Malignant EEG patterns in cardiac arrest patients treated with targeted temperature management who survive to hospital discharge. Resuscitation. 2015;90:127–32.

    Article  PubMed  PubMed Central  Google Scholar 

  51. ter Horst HJ, Brouwer OF, Bos AF. Burst suppression on amplitude-integrated electroencephalogram may be induced by midazolam: a report on three cases. Acta Paediatr. 2004;93(4):559–63.

    Article  PubMed  Google Scholar 

  52. Rundgren M, Westhall E, Cronberg T, et al. Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med. 2010;38(9):1838–44.

    Article  PubMed  Google Scholar 

  53. Bouwes A, van Poppelen D, Koelman JH, et al. Acute posthypoxic myoclonus after cardiopulmonary resuscitation. BMC Neurol. 2012;12:63.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Young GB. The EEG in coma. J Clin Neurophysiol. 2000;17(5):473–85.

    Article  CAS  PubMed  Google Scholar 

  55. Rossetti AO, Oddo M, Logroscino G, et al. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67(3):301–7.

    PubMed  Google Scholar 

  56. Tsetsou S, Novy J, Oddo M, et al. EEG reactivity to pain in comatose patients: importance of the stimulus type. Resuscitation. 2015;97:34–7.

    Article  PubMed  Google Scholar 

  57. Azabou E, Fischer C, Mauguiere F, et al. Prospective cohort study evaluating the prognostic value of simple EEG parameters in postanoxic coma. Clin EEG Neurosci. 2016;47(1):75–82.

    Article  PubMed  Google Scholar 

  58. Juan E, Novy J, Suys T, et al. Clinical evolution after a non-reactive hypothermic EEG following cardiac arrest. Neurocrit Care. 2015;22(3):403–8.

    Article  CAS  PubMed  Google Scholar 

  59. Logi F, Pasqualetti P, Tomaiuolo F. Predict recovery of consciousness in post-acute severe brain injury: the role of EEG reactivity. Brain Inj. 2011;25(10):972–9.

    Article  PubMed  Google Scholar 

  60. Li L, Kang XG, Qi S, et al. Brain response to thermal stimulation predicts outcome of patients with chronic disorders of consciousness. Clin Neurophysiol. 2015;126(8):1539–47.

    Article  PubMed  Google Scholar 

  61. Kaplan PW, Genoud D, Ho TW, et al. Clinical correlates and prognosis in early spindle coma. Clin Neurophysiol. 2000;111(4):584–90.

    Article  CAS  PubMed  Google Scholar 

  62. Urakami Y. Relationship between, sleep spindles and clinical recovery in patients with traumatic brain injury: a simultaneous EEG and MEG study. Clin EEG Neurosci. 2012;43(1):39–47.

    Article  PubMed  Google Scholar 

  63. Sutter R, Stevens RD, Kaplan PW. Significance of triphasic waves in patients with acute encephalopathy: a nine-year cohort study. Clin Neurophysiol. 2013;124(10):1952–8.

    Article  PubMed  Google Scholar 

  64. RamachandranNair R, Sharma R, Weiss SK, et al. A reappraisal of rhythmic coma patterns in children. Can J Neurol Sci. 2005;32(4):518–23.

    Article  PubMed  Google Scholar 

  65. Ramachandrannair R, Sharma R, Weiss SK, et al. Reactive EEG patterns in pediatric coma. Pediatr Neurol. 2005;33(5):345–9.

    Article  PubMed  Google Scholar 

  66. Douglass LM, Wu JY, Rosman NP, et al. Burst suppression electroencephalogram pattern in the newborn: predicting the outcome. J Child Neurol. 2002;17(6):403–8.

    Article  PubMed  Google Scholar 

  67. RamachandranNair R, Weiss SK. Incomplete alpha coma pattern in a child. Pediatr Neurol. 2005;33(2):127–30.

    Article  PubMed  Google Scholar 

  68. Liu G, Su Y, Jiang M, et al. Electroencephalography reactivity for prognostication of post-anoxic coma after cardiopulmonary resuscitation: a comparison of quantitative analysis and visual analysis. Neurosci Lett. 2016;626:74–8.

    Article  CAS  PubMed  Google Scholar 

  69. Noirhomme Q, Lehembre R, Lugo ZR, et al. Automated analysis of background EEG and reactivity during therapeutic hypothermia in comatose patients after cardiac arrest. Clin EEG Neurosci. 2014;45(1):6–13.

    Article  PubMed  Google Scholar 

  70. Gilmore EJ, Gaspard N, Choi HA, et al. Acute brain failure in severe sepsis: a prospective study in the medical intensive care unit utilizing continuous EEG monitoring. Intensive Care Med. 2015;41(4):686–94.

    Article  PubMed  Google Scholar 

  71. Westhall E, Rosen I, Rossetti AO, et al. Interrater variability of EEG interpretation in comatose cardiac arrest patients. Clin Neurophysiol. 2015;126(12):2397–404.

    Article  PubMed  Google Scholar 

  72. Hofmeijer J, Beernink TM, Bosch FH, et al. Early EEG contributes to multimodal outcome prediction of postanoxic coma. Neurology. 2015;85(2):137–43.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tsetsou S, Oddo M, Rossetti AO. Clinical outcome after a reactive hypothermic EEG following cardiac arrest. Neurocrit Care. 2013;19(3):283–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Yan, Y. (2022). Abnormal EEG Background Activity. In: Wang, X., Li, F., Pan, S. (eds) Multi-Modal EEG Monitoring of Severely Neurologically Ill Patients. Springer, Singapore. https://doi.org/10.1007/978-981-16-4493-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4493-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4492-4

  • Online ISBN: 978-981-16-4493-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics