Skip to main content

Common Abnormal EEG in Neurocritical Ill Patients

  • Chapter
  • First Online:
Multi-Modal EEG Monitoring of Severely Neurologically Ill Patients

Abstract

Critically ill patients have a high risk of various types of nerve damage, and if not detected and treated in time, this may lead to permanent neurological dysfunction. EEG is extremely sensitive to the evaluation of cerebral cortical function in patients with brain injury and can promote the early recognition and management of abnormal conditions in critically ill patients. Therefore, correct identification of abnormal EEG waveforms in critically ill patients and understanding of its clinical guiding significance are the basis of critically ill EEG interpretation and the difficult issues with which clinicians deal their work. This chapter, combined with the EEG legend, introduces how to identify epileptiform discharge, periodic discharge (PD), ictal-interictal continuum (IIC), abnormal slow-wave activity, and special coma EEG, such as α and β coma, BS pattern, nonreactive low-voltage slow activity, and ECS. This chapter focuses on explaining the pathological mechanism of each abnormal waveform, the possible disease direction, and the guiding significance for clinical treatment and prognostic judgment, providing a reference for clinicians to read and interpret severely abnormal EEGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirsch LJ, LaRoche SM, Gaspard N, et al. American clinical neurophysiology society’s standardized critical care EEG terminology: 2012 version. J Clin Neurophysiol. 2013;30(1):1–27.

    Article  CAS  PubMed  Google Scholar 

  2. Bhasin H, Sharma S. The new international league against epilepsy (ILAE) 2017 classification of seizures and epilepsy: what pediatricians need to know! Indian J Pediatr. 2019;86(7):569–71.

    Article  PubMed  Google Scholar 

  3. Moeller F, Muthuraman M, Stephani U, et al. Representation and propagation of epileptic activity in absences and generalized photoparoxysmal responses. Hum Brain Mapp. 2013;34(8):1896–909.

    Article  PubMed  Google Scholar 

  4. Li Q, Luo C, Yang T, et al. EEG-fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy. Epilepsy Res. 2009;87(2-3):160–8.

    Article  PubMed  Google Scholar 

  5. Nersesyan H, Hyder F, Rothman DL, et al. Dynamic fMRI and EEG recordings during spike-wave seizures and generalized tonic-clonic seizures in WAG/Rij rats. J Cereb Blood Flow Metab. 2004;24(6):589–99.

    Article  PubMed  Google Scholar 

  6. Blumenfeld H. Consciousness and epilepsy: why are patients with absence seizures absent? Prog Brain Res. 2005;150:271–86.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Blumenfeld H. Cellular and network mechanisms of spike-wave seizures. Epilepsia. 2005;46(Suppl 9):21–33.

    Article  CAS  PubMed  Google Scholar 

  8. Carney PW, Masterton RA, Harvey AS, et al. The core network in absence epilepsy. Differences in cortical and thalamic BOLD response. Neurology. 2010;75(10):904–11.

    Article  CAS  PubMed  Google Scholar 

  9. Westmoreland BF. Epileptiform electroencephalographic patterns. Mayo Clin Proc. 1996;71(5):501–11.

    Article  CAS  PubMed  Google Scholar 

  10. Kanazawa O. Reappraisal of abnormal EEG findings in children with ADHD: on the relationship between ADHD and epileptiform discharges. Epilepsy Behav. 2014;41:251–6.

    Article  PubMed  Google Scholar 

  11. Kartal A, Aksoy E, Deda G. The effects of risk factors on EEG and seizure in children with ADHD. Acta Neurol Belg. 2017;117(1):169–73.

    Article  PubMed  Google Scholar 

  12. Lee EH, Choi YS, Yoon HS, et al. Clinical impact of epileptiform discharge in children with attention-deficit/hyperactivity disorder (ADHD). J Child Neurol. 2016;31(5):584–8.

    Article  PubMed  Google Scholar 

  13. Mathew T, Srikanth SG, Satishchandra P. Malformations of cortical development (MCDs) and epilepsy: experience from a tertiary care center in south India. Seizure. 2010;19(3):147–52.

    Article  PubMed  Google Scholar 

  14. Grant AC, Chau L, Arya K, et al. Prevalence of epileptiform discharges in healthy 11- and 12-year-old children. Epilepsy Behav. 2016;62:53–6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jayalakshmi S, Dhondji M, Vooturi S, et al. Inter-ictal EEG patterns in malformations of cortical development and epilepsy. Clin Neurol Neurosurg. 2020;196:106022.

    Article  PubMed  Google Scholar 

  16. Borges MA, Botos HJ, Bastos RF, et al. Emergency EEG: study of survival. Arq Neuropsiquiatr. 2010;68(2):174–8.

    Article  PubMed  Google Scholar 

  17. Gomez-Ibanez A, McLachlan RS, Mirsattari SM, et al. Prognostic factors in patients with refractory idiopathic generalized epilepsy. Epilepsy Res. 2017;130:69–73.

    Article  CAS  PubMed  Google Scholar 

  18. Ruijter BJ, van Putten MJ, Hofmeijer J. Generalized epileptiform discharges in postanoxic encephalopathy: quantitative characterization in relation to outcome. Epilepsia. 2015;56(11):1845–54.

    Article  PubMed  Google Scholar 

  19. Plummer C, Wagner M, Fuchs M, et al. Clinical utility of distributed source modelling of interictal scalp EEG in focal epilepsy. Clin Neurophysiol. 2010;121(10):1726–39.

    Article  CAS  PubMed  Google Scholar 

  20. Lengler U, Kafadar I, Neubauer BA, et al. fMRI correlates of interictal epileptic activity in patients with idiopathic benign focal epilepsy of childhood. A simultaneous EEG-functional MRI study. Epilepsy Res. 2007;75(1):29–38.

    Article  PubMed  Google Scholar 

  21. Plummer C, Wagner M, Fuchs M, et al. Dipole versus distributed EEG source localization for single versus averaged spikes in focal epilepsy. J Clin Neurophysiol. 2010;27(3):141–62.

    Article  CAS  PubMed  Google Scholar 

  22. Motomura E, Inui K, Ohoyama K, et al. Electroencephalographic dipole source modeling of frontal intermittent rhythmic delta activity. Neuropsychobiology. 2012;65(2):103–8.

    Article  PubMed  Google Scholar 

  23. Fogarasi A, Boesebeck F, Tuxhorn I. A detailed analysis of symptomatic posterior cortex seizure semiology in children younger than seven years. Epilepsia. 2003;44(1):89–96.

    Article  PubMed  Google Scholar 

  24. Xiao YH, Liao JX, Huang J, et al. Interictal epileptiform discharges in children with epilepsy. Zhongguo Dang Dai Er Ke Za Zhi. 2008;10(3):322–4.

    PubMed  Google Scholar 

  25. Nariai H, Beal J, Galanopoulou AS, et al. Scalp EEG Ictal gamma and beta activity during infantile spasms: evidence of focality. Epilepsia. 2017;58(5):882–92.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hooshmand H, Morganroth R, Corredor C. Significance of focal and lateralized beta activity in the EEG. Clin Electroencephalogr. 1980;11(3):140–4.

    Article  CAS  PubMed  Google Scholar 

  27. Gaspard N, Manganas L, Rampal N, et al. Similarity of lateralized rhythmic delta activity to periodic lateralized epileptiform discharges in critically ill patients. JAMA Neurol. 2013;70(10):1288–95.

    PubMed  Google Scholar 

  28. Morikawa T. Rolandic discharges in benign childhood epilepsy with centrotemporal spikes, and in other forms of partial epilepsies. Epileptic Disord. 2000;2(Suppl 1):S23–8.

    PubMed  Google Scholar 

  29. Al-Sulaiman A. Electroencephalographic findings in children with cerebral palsy: a study of 151 patients. Funct Neurol. 2001;16(4):325–8.

    CAS  PubMed  Google Scholar 

  30. Coppola G. Malignant migrating partial seizures in infancy. Handb Clin Neurol. 2013;111:605–9.

    Article  PubMed  Google Scholar 

  31. Specchio N, Pietrafusa N. New-onset refractory status epilepticus and febrile infection-related epilepsy syndrome. Dev Med Child Neurol. 2020;62(8):897–905.

    Article  PubMed  Google Scholar 

  32. Fox K, Wells ME, Tennison M, et al. Febrile infection-related epilepsy syndrome (FIRES): a literature review and case study. Neurodiagn J. 2017;57(3):224–33.

    Article  PubMed  Google Scholar 

  33. Riikonen R. Infantile spasms: outcome in clinical studies. Pediatr Neurol. 2020;108:54–64.

    Article  PubMed  Google Scholar 

  34. Hirsch LJ, Brenner RP, Drislane FW, et al. The ACNS subcommittee on research terminology for continuous EEG monitoring: proposed standardized terminology for rhythmic and periodic EEG patterns encountered in critically ill patients. J Clin Neurophysiol. 2005;22(2):128–35.

    Article  PubMed  Google Scholar 

  35. Garzon E, Fernandes RM, Sakamoto AC. Serial EEG during human status epilepticus: evidence for PLED as an ictal pattern. Neurology. 2001;57(7):1175–83.

    Article  CAS  PubMed  Google Scholar 

  36. Zafar SF, Subramaniam T, Osman G, et al. Electrographic seizures and ictal-interictal continuum (IIC) patterns in critically ill patients. Epilepsy Behav. 2020;106:107037.

    Article  PubMed  Google Scholar 

  37. Lin L, Drislane FW. Lateralized periodic discharges: a literature review. J Clin Neurophysiol. 2018;35(3):189–98.

    Article  PubMed  Google Scholar 

  38. COBB W, HILL D. Electroencephalogram in subacute progressive encephalitis. Brain. 1950;73(3):392–404.

    Article  CAS  PubMed  Google Scholar 

  39. Chatrian GE, Shaw CM, Leffman H. The significance of periodic lateralized epileptiform discharges in EEG: an electrogranphic, clinical and pathological study. Electroencephalogr Clin Neurophysiol. 1964;17:177–93.

    Article  CAS  PubMed  Google Scholar 

  40. Bastide L, Legros B, Rampal N, et al. Clinical correlates of periodic discharges and nonconvulsive seizures in posterior reversible encephalopathy syndrome (PRES). Neurocrit Care. 2018;29(3):481–90.

    Article  PubMed  Google Scholar 

  41. Bauerschmidt A, Rubinos C, Claassen J. Approach to managing periodic discharges. J Clin Neurophysiol. 2018;35(4):309–13.

    Article  PubMed  Google Scholar 

  42. Reiher J, Rivest J, Grand’Maison F, et al. Periodic lateralized epileptiform discharges with transitional rhythmic discharges: association with seizures. Electroencephalogr Clin Neurophysiol. 1991;78(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  43. Chong DJ, Hirsch LJ. Which EEG patterns warrant treatment in the critically ill? Reviewing the evidence for treatment of periodic epileptiform discharges and related patterns. J Clin Neurophysiol. 2005;22(2):79–91.

    Article  PubMed  Google Scholar 

  44. Brenner RP. EEG in convulsive and nonconvulsive status epilepticus. J Clin Neurophysiol. 2004;21(5):319–31.

    PubMed  Google Scholar 

  45. Brenner RP, Schaul N. Periodic EEG patterns: classification, clinical correlation, and pathophysiology. J Clin Neurophysiol. 1990;7(2):249–67.

    Article  CAS  PubMed  Google Scholar 

  46. Hirsch LJBR. Periodic discharges and other controversial EEG patterns. In: Hirsch LJ, Brenner RP, editors. Atlas of EEG in critical care. Chichester: Wiley-Blackwell; 2010. p. 129–60.

    Chapter  Google Scholar 

  47. Gaches J. Periodic activity in the EEG. Rev Electroencephalogr Neurophysiol Clin. 1971;1(1):9–33.

    Article  CAS  PubMed  Google Scholar 

  48. Praveen-kumar S, Sinha S, Taly AB, et al. Electroencephalographic and imaging profile in a subacute sclerosing panencephalitis (SSPE) cohort: a correlative study. Clin Neurophysiol. 2007;118(9):1947–54.

    Article  CAS  PubMed  Google Scholar 

  49. Foley JM, Watson CW, Adams RD. Significance of the electroencephalographic changes in hepatic coma. 1950.

    Google Scholar 

  50. Bickford RG, Butt HR. Hepatic coma: the electroencephalographic pattern. J Clin Invest. 1955;34(6):790–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaplan PW, Sutter R. Affair with triphasic waves-their striking presence, mysterious significance, and cryptic origins: what are they? J Clin Neurophysiol. 2015;32(5):401–5.

    Article  PubMed  Google Scholar 

  52. Emmady P D, Murr N. EEG triphasic waves. 2020.

    Google Scholar 

  53. Kaplan P, Schlattman DK. Typical versus atypical triphasic waves. J Clin Neurophysiol. 2013;30(2):211.

    Article  PubMed  Google Scholar 

  54. Hirsch LJ, Claassen J, Mayer SA, et al. Stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs): a common EEG phenomenon in the critically ill. Epilepsia. 2004;45(2):109–23.

    Article  PubMed  Google Scholar 

  55. Lee JW, LaRoche S, Choi H, et al. Development and feasibility testing of a critical care EEG monitoring database for standardized clinical reporting and multicenter collaborative research. J Clin Neurophysiol. 2016;33(2):133–40.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Foreman B, Claassen J, Abou KK, et al. Generalized periodic discharges in the critically ill: a case-control study of 200 patients. Neurology. 2012;79(19):1951–60.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Husari KS, Johnson EL. Periodic discharges: how to approach, when to treat. J Clin Neurophysiol. 2020;37(5):411–21.

    Article  PubMed  Google Scholar 

  58. Garcia-Morales I, Garcia MT, Galan-Davila L, et al. Periodic lateralized epileptiform discharges: etiology, clinical aspects, seizures, and evolution in 130 patients. J Clin Neurophysiol. 2002;19(2):172–7.

    Article  PubMed  Google Scholar 

  59. Neufeld MY, Vishnevskaya S, Treves TA, et al. Periodic lateralized epileptiform discharges (PLEDs) following stroke are associated with metabolic abnormalities. Electroencephalogr Clin Neurophysiol. 1997;102(4):295–8.

    Article  CAS  PubMed  Google Scholar 

  60. Sekiguchi K, Akiyoshi K, Okazaki N, et al. PLEDs in an infant with congenital protein C deficiency: a case report. Clin Neurophysiol. 2010;121(5):800–1.

    Article  PubMed  Google Scholar 

  61. de Los RE, McJunkin JE, Glauser TA, et al. Periodic lateralized epileptiform discharges in La Crosse encephalitis, a worrisome subgroup: clinical presentation, electroencephalogram (EEG) patterns, and long-term neurologic outcome. J Child Neurol. 2008;23(2):167–72.

    Article  Google Scholar 

  62. Gandelman-Marton R, Rabey JM, Flechter S. Periodic lateralized epileptiform discharges in multiple sclerosis: a case report. J Clin Neurophysiol. 2003;20(2):117–21.

    Article  CAS  PubMed  Google Scholar 

  63. Witsch J, Frey HP, Schmidt JM, et al. Electroencephalographic periodic discharges and frequency-dependent brain tissue hypoxia in acute brain injury. JAMA Neurol. 2017;74(3):301–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Subramaniam T, Jain A, Hall LT, et al. Lateralized periodic discharges frequency correlates with glucose metabolism. Neurology. 2019;92(7):e670–4.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Punia V, Vakani R, Burgess R, et al. Electrographic and clinical natural history of lateralized periodic discharges. J Clin Neurophysiol. 2018;35(1):71–6.

    Article  PubMed  Google Scholar 

  66. Rodriguez RA, Vlachy J, Lee JW, et al. Association of periodic and rhythmic electroencephalographic patterns with seizures in critically ill patients. JAMA Neurol. 2017;74(2):181–8.

    Article  Google Scholar 

  67. Dono F, Russo M, Carrarini C, et al. Lateralized periodic discharges in insular status epilepticus: a case report of a periodic EEG pattern associated with ictal manifestation. Clin Neurophysiol Pract. 2019;4:27–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sully KE, Husain AM. Generalized periodic discharges: a topical review. J Clin Neurophysiol. 2018;35(3):199–207.

    Article  PubMed  Google Scholar 

  69. Leitinger M, Beniczky S, Rohracher A, et al. Salzburg consensus criteria for non-convulsive status epilepticus—approach to clinical application. Epilepsy Behav. 2015;49:158–63.

    Article  CAS  PubMed  Google Scholar 

  70. Rodriguez V, Rodden MF, LaRoche SM. Ictal-interictal continuum: a proposed treatment algorithm. Clin Neurophysiol. 2016;127(4):2056–64.

    Article  PubMed  Google Scholar 

  71. Vespa P, Tubi M, Claassen J, et al. Metabolic crisis occurs with seizures and periodic discharges after brain trauma. Ann Neurol. 2016;79(4):579–90.

    Article  PubMed  Google Scholar 

  72. Moseley BD. Association of periodic discharges with reduced brain tissue oxygenation: no longer straddling the fence? JAMA Neurol. 2017;74(3):266–7.

    Article  PubMed  Google Scholar 

  73. Carneiro F, Bentes C, Peralta AR. Etiology and clinical impact of interictal periodic discharges on the routine outpatient scalp EEG. J Clin Neurophysiol. 2020;38:202–7.

    Article  Google Scholar 

  74. Milani P, Malissin I, Tran-Dinh YR, et al. Prognostic EEG patterns in patients resuscitated from cardiac arrest with particular focus on generalized periodic epileptiform discharges (GPEDs). Neurophysiol Clin. 2014;44(2):153–64.

    Article  CAS  PubMed  Google Scholar 

  75. Li HT, Wu T, Lin WR, et al. Clinical correlation and prognostic implication of periodic EEG patterns: a cohort study. Epilepsy Res. 2017;131:44–50.

    Article  PubMed  Google Scholar 

  76. Jadeja N, Zarnegar R, Legatt AD. Clinical outcomes in patients with generalized periodic discharges. Seizure. 2017;45:114–8.

    Article  PubMed  Google Scholar 

  77. Ong C, Gilmore E, Claassen J, et al. Impact of prolonged periodic epileptiform discharges on coma prognosis. Neurocrit Care. 2012;17(1):39–44.

    Article  PubMed  Google Scholar 

  78. Gross DW, Wiebe S, Blume WT. The periodicity of lateralized epileptiform discharges. Clin Neurophysiol. 1999;110(9):1516–20.

    Article  CAS  PubMed  Google Scholar 

  79. Orta DS, Chiappa KH, Quiroz AZ, et al. Prognostic implications of periodic epileptiform discharges. Arch Neurol. 2009;66(8):985–91.

    PubMed  Google Scholar 

  80. Fushimi M, Matsubuchi N, Sekine A, et al. Benign bilateral independent periodic lateralized epileptiform discharges. Acta Neurol Scand. 2003;108(1):55–9.

    Article  CAS  PubMed  Google Scholar 

  81. Osman G, Rahangdale R, Britton JW, et al. Bilateral independent periodic discharges are associated with electrographic seizures and poor outcome: a case-control study. Clin Neurophysiol. 2018;129(11):2284–9.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Freund B, Gugger JJ, Reynolds A, et al. Clinical and electrographic correlates of bilateral independent periodic discharges. J Clin Neurophysiol. 2018;35(3):234–41.

    Article  PubMed  Google Scholar 

  83. Shaikh AG, Gulati D, Wu S, et al. Independent and symmetric seizures from parasagittal cortex: is this a feature of profound hypoglycemia? Epilepsy Behav. 2012;25(2):263–5.

    Article  PubMed  Google Scholar 

  84. Andraus ME, Andraus CF, Alves-Leon SV. Periodic EEG patterns: importance of their recognition and clinical significance. Arq Neuropsiquiatr. 2012;70(2):145–51.

    Article  PubMed  Google Scholar 

  85. Roos KL, Tuite PJ, Below ME, et al. Reversible cortical blindness (Anton’s syndrome) associated with bilateral occipital EEG abnormalities. Clin Electroencephalogr. 1990;21(2):104–9.

    Article  CAS  PubMed  Google Scholar 

  86. Aye SM, Lim KS, Ramli NM, et al. Periodic lateralized epileptiform discharges (PLEDs) in cerebral lupus correlated with white-matter lesions in brain MRI and reduced cerebral blood flow in SPECT. Lupus. 2013;22(5):510–4.

    Article  CAS  PubMed  Google Scholar 

  87. Fitzpatrick W, Lowry N. PLEDs: clinical correlates. Can J Neurol Sci. 2007;34(4):443–50.

    Article  CAS  PubMed  Google Scholar 

  88. Iyer R S, Ramalingam R, Akhtar S, et al. Bilateral independent periodic lateralised epileptiform discharges at presentation followed by rapid recovery: novel observations from a case of Epstein-Barr virus encephalitis. BMJ Case Rep. 2019;12(7).

    Google Scholar 

  89. Nicolai J, van Putten MJ, Tavy DL. BIPLEDs in akinetic mutism caused by bilateral anterior cerebral artery infarction. Clin Neurophysiol. 2001;112(9):1726–8.

    Article  CAS  PubMed  Google Scholar 

  90. Fountain NB, Waldman WA. Effects of benzodiazepines on triphasic waves: implications for nonconvulsive status epilepticus. J Clin Neurophysiol. 2001;18(4):345–52.

    Article  CAS  PubMed  Google Scholar 

  91. Boulanger JM, Deacon C, Lecuyer D, et al. Triphasic waves versus nonconvulsive status epilepticus: EEG distinction. Can J Neurol Sci. 2006;33(2):175–80.

    Article  PubMed  Google Scholar 

  92. Kaplan PW, Duckworth J. Confusion and SIRPIDs regress with parenteral lorazepam. Epileptic Disord. 2011;13(3):291–4.

    Article  PubMed  Google Scholar 

  93. Braksick SA, Burkholder DB, Tsetsou S, et al. Associated factors and prognostic implications of stimulus-induced rhythmic, periodic, or ictal discharges. JAMA Neurol. 2016;73(5):585–90.

    Article  PubMed  Google Scholar 

  94. Alvarez V, Oddo M, Rossetti AO. Stimulus-induced rhythmic, periodic or ictal discharges (SIRPIDs) in comatose survivors of cardiac arrest: characteristics and prognostic value. Clin Neurophysiol. 2013;124(1):204–8.

    Article  PubMed  Google Scholar 

  95. Johnson EL, Kaplan PW, Ritzl EK. Termination patterns of stimulus-induced rhythmic, periodic, or ictal patterns and spontaneous electrographic seizures. Clin Neurophysiol. 2017;128(11):2279–85.

    Article  PubMed  Google Scholar 

  96. Recommendations for electroencephalography monitoring in neurocritical care units. Chin Med J (Engl). 2017;130(15):1851–55.

    Google Scholar 

  97. Beniczky S, Hirsch LJ, Kaplan PW, et al. Unified EEG terminology and criteria for nonconvulsive status epilepticus. Epilepsia. 2013;54(Suppl 6):28–9.

    Article  PubMed  Google Scholar 

  98. Pohlmann-Eden B, Hoch DB, Cochius JI, et al. Periodic lateralized epileptiform discharges—a critical review. J Clin Neurophysiol. 1996;13(6):519–30.

    Article  CAS  PubMed  Google Scholar 

  99. Cormier J, Maciel CB, Gilmore EJ. Ictal-interictal continuum: when to worry about the continuous electroencephalography pattern. Semin Respir Crit Care Med. 2017;38(6):793–806.

    Article  PubMed  Google Scholar 

  100. Struck AF, Westover MB, Hall LT, et al. Metabolic correlates of the ictal-interictal continuum: FDG-PET during continuous EEG. Neurocrit Care. 2016;24(3):324–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee JW. The EEG ictal-interictal continuum-a metabolic roar but a whimper of a functional outcome. Epilepsy Curr. 2019;19(4):234–6.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yoo JY, Rampal N, Petroff OA, et al. Brief potentially ictal rhythmic discharges in critically ill adults. JAMA Neurol. 2014;71(4):454–62.

    Article  PubMed  Google Scholar 

  103. Johnson EL, Kaplan PW. Population of the ictal-interictal zone: the significance of periodic and rhythmic activity. Clin Neurophysiol Pract. 2017;2:107–18.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hartings JA, Williams AJ, Tortella FC. Occurrence of nonconvulsive seizures, periodic epileptiform discharges, and intermittent rhythmic delta activity in rat focal ischemia. Exp Neurol. 2003;179(2):139–49.

    Article  PubMed  Google Scholar 

  105. Claassen J, Jette N, Chum F, et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology. 2007;69(13):1356–65.

    Article  CAS  PubMed  Google Scholar 

  106. Sen-Gupta I, Schuele SU, Macken MP, et al. “Ictal” lateralized periodic discharges. Epilepsy Behav. 2014;36:165–70.

    Article  PubMed  Google Scholar 

  107. Newey CR, Sahota P, Hantus S. Electrographic features of lateralized periodic discharges stratify risk in the interictal-ictal continuum. J Clin Neurophysiol. 2017;34(4):365–9.

    Article  PubMed  Google Scholar 

  108. Claassen J, Hirsch LJ, Frontera JA, et al. Prognostic significance of continuous EEG monitoring in patients with poor-grade subarachnoid hemorrhage. Neurocrit Care. 2006;4(2):103–12.

    Article  PubMed  Google Scholar 

  109. Akman CI, Riviello JJ. Generalized periodic epileptiform discharges in critically ill children: a continuum of status epilepticus or an epiphenomenon? J Clin Neurophysiol. 2011;28(4):366–72.

    Article  PubMed  Google Scholar 

  110. Tanaka H, Khoo HM, Dubeau F, et al. Association between scalp and intracerebral electroencephalographic seizure-onset patterns: a study in different lesional pathological substrates. Epilepsia. 2018;59(2):420–30.

    Article  PubMed  Google Scholar 

  111. Faigle R, Sutter R, Kaplan PW. Electroencephalography of encephalopathy in patients with endocrine and metabolic disorders. J Clin Neurophysiol. 2013;30(5):505–16.

    Article  PubMed  Google Scholar 

  112. Sutter R, Stevens RD, Kaplan PW. Clinical and imaging correlates of EEG patterns in hospitalized patients with encephalopathy. J Neurol. 2013;260(4):1087–98.

    Article  PubMed  Google Scholar 

  113. Foreman B, Mahulikar A, Tadi P, et al. Generalized periodic discharges and ‘triphasic waves’: a blinded evaluation of inter-rater agreement and clinical significance. Clin Neurophysiol. 2016;127(2):1073–80.

    Article  PubMed  Google Scholar 

  114. Claassen J, Mayer SA, Kowalski RG, et al. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62(10):1743–8.

    Article  CAS  PubMed  Google Scholar 

  115. de la Paz D, Brenner RP. Bilateral independent periodic lateralized epileptiform discharges. Clinical significance. Arch Neurol. 1981;38(11):713–5.

    Article  PubMed  Google Scholar 

  116. Snodgrass SM, Tsuburaya K, Ajmone-Marsan C. Clinical significance of periodic lateralized epileptiform discharges: relationship with status epilepticus. J Clin Neurophysiol. 1989;6(2):159–72.

    Article  CAS  PubMed  Google Scholar 

  117. Normand MM, Wszolek ZK, Klass DW. Temporal intermittent rhythmic delta activity in electroencephalograms. J Clin Neurophysiol. 1995;12(3):280–4.

    Article  CAS  PubMed  Google Scholar 

  118. Accolla EA, Kaplan PW, Maeder-Ingvar M, et al. Clinical correlates of frontal intermittent rhythmic delta activity (FIRDA). Clin Neurophysiol. 2011;122(1):27–31.

    Article  PubMed  Google Scholar 

  119. Johnson EL, Kaplan PW, Ritzl EK. Stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs). J Clin Neurophysiol. 2018;35(3):229–33.

    Article  PubMed  Google Scholar 

  120. Alsherbini KA, Plancher JM, Ficker DM, et al. Stimulus-induced rhythmic, periodic, or ictal discharges in coma-incidence and interrater reliability of continuous EEG after a standard stimulation protocol: a prospective study. J Clin Neurophysiol. 2017;34(4):375–80.

    Article  PubMed  Google Scholar 

  121. Tsetsou S, Novy J, Oddo M, et al. EEG reactivity to pain in comatose patients: importance of the stimulus type. Resuscitation. 2015;97:34–7.

    Article  PubMed  Google Scholar 

  122. Struck AF, Ustun B, Ruiz AR, et al. Association of an electroencephalography-based risk score with seizure probability in hospitalized patients. JAMA Neurol. 2017;74(12):1419–24.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Nagarajan L, Palumbo L, Ghosh S. Brief electroencephalography rhythmic discharges (BERDs) in the neonate with seizures: their significance and prognostic implications. J Child Neurol. 2011;26(12):1529–33.

    Article  PubMed  Google Scholar 

  124. Punia V, Garcia CG, Hantus S. Incidence of recurrent seizures following hospital discharge in patients with LPDs (PLEDs) and nonconvulsive seizures recorded on continuous EEG in the critical care setting. Epilepsy Behav. 2015;49:250–4.

    Article  PubMed  Google Scholar 

  125. Swisher CB, Shah D, Sinha SR, et al. Baseline EEG pattern on continuous ICU EEG monitoring and incidence of seizures. J Clin Neurophysiol. 2015;32(2):147–51.

    Article  PubMed  Google Scholar 

  126. Struck AF, Osman G, Rampal N, et al. Time-dependent risk of seizures in critically ill patients on continuous electroencephalogram. Ann Neurol. 2017;82(2):177–85.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Morselli PL, Franco-Morselli R. Clinical pharmacokinetics of antiepileptic drugs in adults. Pharmacol Ther. 1980;10(1):65–101.

    Article  CAS  PubMed  Google Scholar 

  128. Osman GM, Araujo DF, Maciel CB. Ictal interictal continuum patterns. Curr Treat Options Neurol. 2018;20(5):15.

    Article  PubMed  Google Scholar 

  129. Assal F, Papazyan JP, Slosman DO, et al. SPECT in periodic lateralized epileptiform discharges (PLEDs): a form of partial status epilepticus? Seizure. 2001;10(4):260–5.

    Article  CAS  PubMed  Google Scholar 

  130. Smith CC, Tatum WO, Gupta V, et al. SPECT-negative SIRPIDs: less aggressive neurointensive care? J Clin Neurophysiol. 2014;31(3):e6–e10.

    Article  PubMed  Google Scholar 

  131. Cianfoni A, Caulo M, Cerase A, et al. Seizure-induced brain lesions: a wide spectrum of variably reversible MRI abnormalities. Eur J Radiol. 2013;82(11):1964–72.

    Article  CAS  PubMed  Google Scholar 

  132. Narayanan J. Can diffusion-weighted imaging be used as a tool to predict seizures in patients with PLEDS? Epileptic Disord. 2016;18(4):440–6.

    Article  PubMed  Google Scholar 

  133. Waziri A, Claassen J, Stuart RM, et al. Intracortical electroencephalography in acute brain injury. Ann Neurol. 2009;66(3):366–77.

    Article  PubMed  Google Scholar 

  134. Munro KE, Sakata S, Toyoizumi T. Theta oscillations alternate with high amplitude neocortical population within synchronized states. Front Neurosci. 2019;13:316.

    Article  Google Scholar 

  135. Lowenstein DH, Aminoff MJ. Clinical and EEG features of status epilepticus in comatose patients. Neurology. 1992;42(1):100–4.

    Article  CAS  PubMed  Google Scholar 

  136. Chen J, Xie L, Hu Y, et al. Nonconvulsive status epilepticus after cessation of convulsive status epilepticus in pediatric intensive care unit patients. Epilepsy Behav. 2018;82:68–73.

    Article  PubMed  Google Scholar 

  137. Trinka E, Leitinger M. Which EEG patterns in coma are nonconvulsive status epilepticus? Epilepsy Behav. 2015;49:203–22.

    Article  PubMed  Google Scholar 

  138. Yildirim M, Konuskan B, Yalnizoglu D, et al. Electroencephalographic findings in anti-N-methyl-d-aspartate receptor encephalitis in children: a series of 12 patients. Epilepsy Behav. 2018;78:118–23.

    Article  PubMed  Google Scholar 

  139. Lee H, Mizrahi MA, Hartings JA, et al. Continuous electroencephalography after moderate to severe traumatic brain injury. Crit Care Med. 2019;47(4):574–82.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Azabou E, Magalhaes E, Braconnier A, et al. Early standard electroencephalogram abnormalities predict mortality in septic intensive care unit patients. PLoS One. 2015;10(10):e139969.

    Article  CAS  Google Scholar 

  141. Bello-Espinosa LE. Infraslow status epilepticus: a new form of subclinical status epilepticus recorded in a child with Sturge-Weber syndrome. Epilepsy Behav. 2015;49:193–7.

    Article  PubMed  Google Scholar 

  142. Desai JD, Toczek MT, Mitchell WG. Frontal intermittent rhythmic delta activity (FIRDA): is there a clinical significance in children and adolescents? Eur J Paediatr Neurol. 2012;16(2):138–41.

    Article  PubMed  Google Scholar 

  143. Cobb WA. Rhythmic slow discharges in the electroencephalogram. J Neurol Neurosurg Psychiatry. 1945;8:65–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Watemberg N, Alehan F, Dabby R, et al. Clinical and radiologic correlates of frontal intermittent rhythmic delta activity. J Clin Neurophysiol. 2002;19(6):535–9.

    Article  PubMed  Google Scholar 

  145. Gayatri NA, Whitehouse WP. Pilot survey of Hashimoto’s encephalopathy in children. Dev Med Child Neurol. 2005;47(8):556–8.

    Article  PubMed  Google Scholar 

  146. Brigo F. Intermittent rhythmic delta activity patterns. Epilepsy Behav. 2011;20(2):254–6.

    Article  PubMed  Google Scholar 

  147. Muellbacher W, Mamoli B. Prolonged impaired consciousness in basilar artery migraine. Headache. 1994;34(5):282–5.

    Article  CAS  PubMed  Google Scholar 

  148. Cerrahoglu ST, Bekdik SP, Arkali BN, et al. Electroencephalographic features associated with intermittent rhythmic delta activity. Neurophysiol Clin. 2019;49(3):227–34.

    Article  Google Scholar 

  149. Dericioglu N, Khasiyev F, Arsava EM, et al. Frontal intermittent rhythmic delta activity (FIRDA) in the neurological intensive care: prevalence, determinants, and clinical significance. Clin EEG Neurosci. 2018;49(4):272–7.

    Article  PubMed  Google Scholar 

  150. Desai J, Mitchell WG, Rosser T, et al. Clinical associations of occipital intermittent rhythmic delta activity. J Child Neurol. 2012;27(4):503–6.

    Article  PubMed  Google Scholar 

  151. Gullapalli D, Fountain NB. Clinical correlation of occipital intermittent rhythmic delta activity. J Clin Neurophysiol. 2003;20(1):35–41.

    Article  PubMed  Google Scholar 

  152. Serafini A, Issa NP, Rose S, et al. TIRDA originating from lateral temporal cortex in a patient with mTLE is not related to hippocampal activity. J Clin Neurophysiol. 2016;33(6):e34–8.

    Article  PubMed  Google Scholar 

  153. Ondo WG, Verma A. Physiological assessment of paroxysmal dystonia secondary to subacute sclerosing panencephalitis. Mov Disord. 2002;17(1):154–7.

    Article  PubMed  Google Scholar 

  154. Vecchierini MF, Andre M, D’Allest AM. Normal EEG of premature infants born between 24 and 30 weeks gestational age: terminology, definitions and maturation aspects. Neurophysiol Clin. 2007;37(5):311–23.

    Article  PubMed  Google Scholar 

  155. Claassen J, Vespa P. Electrophysiologic monitoring in acute brain injury. Neurocrit Care. 2014;21(Suppl 2):S129–47.

    Article  PubMed  Google Scholar 

  156. Beridze M, Khaburzania M, Shakarishvili R, et al. Dominated EEG patterns and their prognostic value in coma caused by traumatic brain injury. Georgian Med News. 2010;186:28–33.

    Google Scholar 

  157. Rosen I, Hagerdal M. Electroencephalographic study of children during ketamine anesthesia. Acta Anaesthesiol Scand. 1976;20(1):32–9.

    Article  CAS  PubMed  Google Scholar 

  158. Morimoto Y, Matsumoto A, Koizumi Y, et al. Changes in the bispectral index during intraabdominal irrigation in patients anesthetized with nitrous oxide and sevoflurane. Anesth Analg. 2005;100(5):1370–4.

    Article  CAS  PubMed  Google Scholar 

  159. Loeb C, Poggio G. Electroencephalograms in a case with ponto-mesencephalic haemorrhage. Electroencephalogr Clin Neurophysiol. 1953;5(2):295–6.

    Article  CAS  PubMed  Google Scholar 

  160. Kaplan PW, Genoud D, Ho TW, et al. Etiology, neurologic correlations, and prognosis in alpha coma. Clin Neurophysiol. 1999;110(2):205–13.

    Article  CAS  PubMed  Google Scholar 

  161. Berkhoff M, Donati F, Bassetti C. Postanoxic alpha (theta) coma: a reappraisal of its prognostic significance. Clin Neurophysiol. 2000;111(2):297–304.

    Article  CAS  PubMed  Google Scholar 

  162. Homan RW, Jones MG. Alpha-pattern coma in a 2-month-old child. Ann Neurol. 1981;9(6):611–3.

    Article  CAS  PubMed  Google Scholar 

  163. Fernandez-Torre JL, Lopez-Delgado A, Hernandez-Hernandez MA, et al. Postanoxic alpha, theta or alpha-theta coma: clinical setting and neurological outcome. Resuscitation. 2018;124:118–25.

    Article  PubMed  Google Scholar 

  164. Sarma GR, Kumar A, Roy AK, et al. Post-cardiorespiratory arrest beta-alpha coma: an unusual electroencephalographic phenomenon. Neurol India. 2003;51(2):266–8.

    CAS  PubMed  Google Scholar 

  165. Carroll WM, Mastaglia FL. Alpha and beta coma in drug intoxication uncomplicated by cerebral hypoxia. Electroencephalogr Clin Neurophysiol. 1979;46(1):95–105.

    Article  CAS  PubMed  Google Scholar 

  166. Husain AM. Electroencephalographic assessment of coma. J Clin Neurophysiol. 2006;23(3):208–20.

    Article  PubMed  Google Scholar 

  167. RamachandranNair R, Sharma R, Weiss SK, et al. A reappraisal of rhythmic coma patterns in children. Can J Neurol Sci. 2005;32(4):518–23.

    Article  PubMed  Google Scholar 

  168. Jones BN, Binnie CD, Fung D, et al. Reversible coma with an EEG pattern normally associated with wakefulness. Electroencephalogr Clin Neurophysiol. 1972;33(1):107–9.

    Article  CAS  PubMed  Google Scholar 

  169. Tomassen W, Kamphuisen HA. Alpha coma. J Neurol Sci. 1986;76(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  170. Synek VM. Prognostically important EEG coma patterns in diffuse anoxic and traumatic encephalopathies in adults. J Clin Neurophysiol. 1988;5(2):161–74.

    Article  CAS  PubMed  Google Scholar 

  171. Sorensen K, Thomassen A, Wernberg M. Prognostic significance of alpha frequency EEG rhythm in coma after cardiac arrest. J Neurol Neurosurg Psychiatry. 1978;41(9):840–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mundi JP, Betancourt J, Ezziddin O, et al. Dilated and unreactive pupils and burst-suppression on electroencephalography due to buproprion overdose. J Intensive Care Med. 2012;27(6):384–8.

    Article  PubMed  Google Scholar 

  173. Pourmand R, Markand ON. Drug-induced alpha coma. J Neurol Neurosurg Psychiatry. 1985;48(3):283–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fossi S, Amantini A, Grippo A, et al. Anoxic-ischemic alpha coma: prognostic significance of the incomplete variant. Neurol Sci. 2004;24(6):397–400.

    Article  CAS  PubMed  Google Scholar 

  175. Martinez BA, Lopez-Martin V, Arcas J, et al. Alpha coma: clinical, electroencephalographic and aetiological correlation in childhood. Rev Neurol. 2001;33(12):1101–5.

    Google Scholar 

  176. Ostojic S, Vukovic R, Milenkovic T, et al. Alpha coma in an adolescent with diabetic ketoacidosis. Turk J Pediatr. 2017;59(3):318–21.

    Article  PubMed  Google Scholar 

  177. Janati A, Erba G. Electroencephalographic correlates of near-drowning encephalopathy in children. Electroencephalogr Clin Neurophysiol. 1982;53(2):182–91.

    Article  CAS  PubMed  Google Scholar 

  178. Steriade M, Gloor P, Llinas RR, et al. Report of IFCN committee on basic mechanisms. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol. 1990;76(6):481–508.

    Article  CAS  PubMed  Google Scholar 

  179. Da SF, van Lierop TH, Schrijer CF, et al. Organization of thalamic and cortical alpha rhythms: spectra and coherences. Electroencephalogr Clin Neurophysiol. 1973;35(6):627–39.

    Article  Google Scholar 

  180. Gurvitch AM, Zarzhetsky Y, Trush VD, et al. Experimental data on the nature of postresuscitation alpha frequency activity. Electroencephalogr Clin Neurophysiol. 1984;58(5):426–37.

    Article  CAS  PubMed  Google Scholar 

  181. Alving J, Moller M, Sindrup E, et al. ‘alpha pattern coma’ following cerebral anoxia. Electroencephalogr Clin Neurophysiol. 1979;47(1):95–101.

    Article  CAS  PubMed  Google Scholar 

  182. Bolen RD, Campbell Z, Bonilha L, et al. Alpha coma related to intentional bupropion overdose. J Neurol Sci. 2016;365:48–9.

    Article  PubMed  Google Scholar 

  183. Patterson JR, Grabois M. Locked-in syndrome: a review of 139 cases. Stroke. 1986;17(4):758–64.

    Article  CAS  PubMed  Google Scholar 

  184. Chase TN, Moretti L, Prensky AL. Clinical and electroencephalographic manifestations of vascular lesions of the pons. Neurology. 1968;18(4):357–68.

    Article  CAS  PubMed  Google Scholar 

  185. Herkes GK, Wszolek ZK, Westmoreland BF, et al. Effects of midazolam on electroencephalograms of seriously ill patients. Mayo Clin Proc. 1992;67(4):334–8.

    Article  CAS  PubMed  Google Scholar 

  186. Pais-Roldan P, Edlow BL, Jiang Y, et al. Multimodal assessment of recovery from coma in a rat model of diffuse brainstem tegmentum injury. Neuroimage. 2019;189:615–30.

    Article  PubMed  Google Scholar 

  187. Sumskii LI. Alpha and beta coma in a brain lesion at the pontomesencephalic level. Fiziol Cheloveka. 1984;10(3):473–6.

    CAS  PubMed  Google Scholar 

  188. Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1(4):455–73.

    Article  CAS  PubMed  Google Scholar 

  189. Westover MB, Gururangan K, Markert MS, et al. Diagnostic value of electroencephalography with ten electrodes in critically ill patients. Neurocrit Care. 2020;33:479–90.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Jafarian A, Freestone DR, Nesic D, et al. Identification of a neural mass model of burst suppression. Conf Proc IEEE Eng Med Biol Soc. 2019;2019:2905–8.

    Google Scholar 

  191. Chakravarty S, Baum TE, An J, et al. A hidden semi-Markov model for estimating burst suppression EEG. Conf Proc IEEE Eng Med Biol Soc. 2019;2019:7076–9.

    Google Scholar 

  192. Rubin DB, Angelini B, Shoukat M, et al. Electrographic predictors of successful weaning from anaesthetics in refractory status epilepticus. Brain. 2020;143(4):1143–57.

    PubMed  PubMed Central  Google Scholar 

  193. Barbella G, Novy J, Marques-Vidal P, et al. Prognostic role of EEG identical bursts in patients after cardiac arrest: multimodal correlation. Resuscitation. 2020;148:140–4.

    Article  PubMed  Google Scholar 

  194. Hofmeijer J, van Putten MJ. EEG in postanoxic coma: prognostic and diagnostic value. Clin Neurophysiol. 2016;127(4):2047–55.

    Article  CAS  PubMed  Google Scholar 

  195. Liang Z, Wang Y, Ren Y, et al. Detection of burst suppression patterns in EEG using recurrence rate. Sci World J. 2014;2014:295070.

    Google Scholar 

  196. Derbyshire A, Rempel B, Forbes A. Effect of anesthetics on action potentials in cerebral cortex of the cat. Amer J Physiol. 1936;116:577–96.

    Article  CAS  Google Scholar 

  197. Swank RL, Watson CW. Effects of barbiturates and ether on spontaneous electrical activity of dog brain. J Neurophysiol. 1949;12(2):137–60.

    Article  CAS  PubMed  Google Scholar 

  198. Steriade M, Amzica F, Contreras D. Cortical and thalamic cellular correlates of electroencephalographic burst-suppression. Electroencephalogr Clin Neurophysiol. 1994;90(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  199. Henry CE, Scoville WB. Suppression-burst activity from isolated cerebral cortex in man. Electroencephalogr Clin Neurophysiol. 1952;4(1):1–22.

    Article  CAS  PubMed  Google Scholar 

  200. Kang BS, Jung KH, Shin JW, et al. Induction of burst suppression or coma using intravenous anesthetics in refractory status epilepticus. J Clin Neurosci. 2015;22(5):854–8.

    Article  PubMed  Google Scholar 

  201. Ohtahara S, Ohtsuka Y, Oka E. Epileptic encephalopathies in early infancy. Indian J Pediatr. 1997;64(5):603–12.

    Article  CAS  PubMed  Google Scholar 

  202. Donat JF. The age-dependent epileptic encephalopathies. J Child Neurol. 1992;7(1):7–21.

    Article  CAS  PubMed  Google Scholar 

  203. Aicardi J, Goutieres F. Neonatal myoclonic encephalopathy (author’s transl). Rev Electroencephalogr Neurophysiol Clin. 1978;8(1):99–101.

    Article  CAS  PubMed  Google Scholar 

  204. Liu CT, Yin F, Huang R, et al. The clinical and electroencephalographic characteristics of early myoclonic encephalopathy. Zhonghua Er Ke Za Zhi. 2012;50(12):899–902.

    PubMed  Google Scholar 

  205. Ohtahara S, Ohtsuka Y, Yamatogi Y, et al. The early-infantile epileptic encephalopathy with suppression-burst: developmental aspects. Brain Dev. 1987;9(4):371–6.

    Article  CAS  PubMed  Google Scholar 

  206. Toda Y, Kobayashi K, Hayashi Y, et al. High-frequency EEG activity in epileptic encephalopathy with suppression-burst. Brain Dev. 2015;37(2):230–6.

    Article  PubMed  Google Scholar 

  207. Vetro A, Pisano T, Chiaro S, et al. Early infantile epileptic-dyskinetic encephalopathy due to biallelic PIGP mutations. Neurol Genet. 2020;6(1):e387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Yamatogi Y, Ohtahara S. Early-infantile epileptic encephalopathy with suppression-bursts, Ohtahara syndrome; its overview referring to our 16 cases. Brain Dev. 2002;24(1):13–23.

    Article  PubMed  Google Scholar 

  209. Hong SY, Hsin YL, Lee IC. An infant with congenital central hypoventilation syndrome: transient burst suppression electroencephalogram. Pediatr Neonatol. 2016;57(4):357–8.

    Article  PubMed  Google Scholar 

  210. Amorim E, Rittenberger JC, Zheng JJ, et al. Continuous EEG monitoring enhances multimodal outcome prediction in hypoxic-ischemic brain injury. Resuscitation. 2016;109:121–6.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Westhall E, Rossetti AO, van Rootselaar AF, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology. 2016;86(16):1482–90.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Awal MA, Lai MM, Azemi G, et al. EEG background features that predict outcome in term neonates with hypoxic ischaemic encephalopathy: a structured review. Clin Neurophysiol. 2016;127(1):285–96.

    Article  PubMed  Google Scholar 

  213. Chalia M, Lee CW, Dempsey LA, et al. Hemodynamic response to burst-suppressed and discontinuous electroencephalography activity in infants with hypoxic ischemic encephalopathy. Neurophotonics. 2016;3(3):31408.

    Google Scholar 

  214. Bloom J, Wyler D, Torjman MC, et al. High incidence of burst suppression during propofol sedation for outpatient colonoscopy: lessons learned from neuromonitoring. Anesthesiol Res Pract. 2020;2020:7246570.

    PubMed  PubMed Central  Google Scholar 

  215. Hogan J, Sun H, Aboul NH, et al. Burst suppression: causes and effects on mortality in critical illness. Neurocrit Care. 2020.

    Google Scholar 

  216. Martinez-Bermejo A, Roche C, Lopez-Martin V, et al. Neonatal EEG trace of burst suppression. Etiological and evolutionary factors. Rev Neurol. 2001;33(6):514–8.

    CAS  PubMed  Google Scholar 

  217. Andresen JM, Girard TD, Pandharipande PP, et al. Burst suppression on processed electroencephalography as a predictor of postcoma delirium in mechanically ventilated ICU patients. Crit Care Med. 2014;42(10):2244–51.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Koch S, Rupp L, Prager C, et al. Emergence delirium in children is related to epileptiform discharges during anaesthesia induction: an observational study. Eur J Anaesthesiol. 2018;35(12):929–36.

    Article  PubMed  Google Scholar 

  219. Nita DA, Moldovan M, Sharma R, et al. Burst-suppression is reactive to photic stimulation in comatose children with acquired brain injury. Clin Neurophysiol. 2016;127(8):2921–30.

    Article  PubMed  Google Scholar 

  220. Vaewpanich J, Reuter-Rice K. Continuous electroencephalography in pediatric traumatic brain injury: Seizure characteristics and outcomes. Epilepsy Behav. 2016;62:225–30.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Zhou DW, Westover MB, McClain LM, et al. Clustering analysis to identify distinct spectral components of encephalogram burst suppression in critically ill patients. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:7258–61.

    PubMed Central  Google Scholar 

  222. Kang X, Jiang H, Wu C, et al. Application of continuous video-electroencephalographic monitoring in patients with consciousness disorders in intensive care unit. Zhonghua Yi Xue Za Zhi. 2015;95(21):1663–6.

    PubMed  Google Scholar 

  223. Leidi A, Pisaturo M, Fumeaux T. Malnutrition-related hyperammonemic encephalopathy presenting with burst suppression: a case report. J Med Case Rep. 2019;13(1):248.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Touchard C, Cartailler J, Leve C, et al. EEG power spectral density under Propofol and its association with burst suppression, a marker of cerebral fragility. Clin Neurophysiol. 2019;130(8):1311–9.

    Article  PubMed  Google Scholar 

  225. Akbik F, Robertson M, Das AS, et al. The PET sandwich: using serial FDG-PET scans with interval burst suppression to assess ictal components of disease. Neurocrit Care. 2020;33:330–1.

    Article  PubMed  Google Scholar 

  226. Jiang M, Su Y, Liu G, et al. EEG pattern predicts awakening of comatose patients after cardiopulmonary resuscitation. Resuscitation. 2020;151:33–8.

    Article  PubMed  Google Scholar 

  227. Rossi SD, Visani E, Panzica F, et al. Sleep patterns associated with the severity of impairment in a large cohort of patients with chronic disorders of consciousness. Clin Neurophysiol. 2018;129(3):687–93.

    Article  Google Scholar 

  228. Sandroni C, D’Arrigo S, Cacciola S, et al. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med. 2020;46:1803–51.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Azabou E, Fischer C, Mauguiere F, et al. Prospective cohort study evaluating the prognostic value of simple EEG parameters in postanoxic coma. Clin EEG Neurosci. 2016;47(1):75–82.

    Article  PubMed  Google Scholar 

  230. Han Y, Fu N, Chen W, et al. Prognostic value of electroencephalography in hypothermia-treated neonates with hypoxic-ischemic encephalopathy: a meta-analysis. Pediatr Neurol. 2019;93:3–10.

    Article  PubMed  Google Scholar 

  231. Qian SY, Wang Q, Su YY. Interpretation of criteria and practical guidance for determination of brain death in children. Zhonghua Er Ke Za Zhi. 2019;57(11):826–9.

    CAS  PubMed  Google Scholar 

  232. Caronna E, Vilaseca A, Maria GGR, et al. Long-term prognosis related to deep sedation in refractory status epilepticus. Acta Neurol Scand. 2020.

    Google Scholar 

  233. Stecker MM, Cheung AT, Pochettino A, et al. Deep hypothermic circulatory arrest: I. Effects of cooling on electroencephalogram and evoked potentials. Ann Thorac Surg. 2001;71(1):14–21.

    Article  CAS  PubMed  Google Scholar 

  234. Scarpino M, Carrai R, Lolli F, et al. Neurophysiology for predicting good and poor neurological outcome at 12 and 72 h after cardiac arrest: the ProNeCA multicentre prospective study. Resuscitation. 2020;147:95–103.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Q., Li, F., Li, X., Zhang, Y. (2022). Common Abnormal EEG in Neurocritical Ill Patients. In: Wang, X., Li, F., Pan, S. (eds) Multi-Modal EEG Monitoring of Severely Neurologically Ill Patients. Springer, Singapore. https://doi.org/10.1007/978-981-16-4493-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4493-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4492-4

  • Online ISBN: 978-981-16-4493-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics