Skip to main content

Flame Root Dynamics and Their Role in the Stabilisation of Lifted Flames

  • Chapter
  • First Online:
Advances in Energy and Combustion

Abstract

This chapter aims to provide a broad overview on the importance of lifted flames in turbulent flows with and without swirl in practical applications for energy production and propulsion. The stabilisation of lifted flames is governed by numerous physical processes that control the behaviour of the flame root or the leading edge. The flame lift-off height, which is the physical distance of the flame root above the burner, is a quantity of practical importance and obtaining accurate predictions using computational fluid dynamics (CFD) is challenging. The large eddy simulation (LES) paradigm has proven to be successful in accurately capturing the flame lift-off height in turbulent reacting flows in simple and complex geometries of practical relevance. The objective of this chapter is to present an overview of the stabilisation mechanisms that have been observed in simulations with relevance to modern applications. An overview of the LES framework for turbulent reacting flows and different sub-grid combustion models are briefly discussed with a focus on the unstrained flamelet combustion model that is used in the case studies presented here. The first part of the simulation results focuses on the canonical jet flame configuration, where it is seen that the lift-off height is sensitive to the jet velocity and the fuel used. The second part of the results focuses on a more complex configuration, which is a gas turbine model combustor with two radial swirlers. The flame root in swirling flows is typically more robust, but failed ignition and local extinction cause the flame root to oscillate and leads to flame lift-off. The amplitude of this oscillation can lead to the occurrence of thermo-acoustic oscillations and flame blow-off under appropriate conditions. The discussion is presented on a physical basis and the observations are compared with measurements. The chapter concludes by summarising the role and importance of modelling flame stabilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spalding DB (1979) Combustion and mass transfer. Pergamon Press, Oxford, UK

    Google Scholar 

  2. Peters N (2000) Turbulent combustion. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  3. Syred N (2006) Prog Energy Combust Sci 32(2), 93–161

    Article  Google Scholar 

  4. Mansour MS (2003) Combust Flame 133(3), 263–274

    Article  Google Scholar 

  5. Lyons KM (2007) Prog Energy Combust Sci 33(2), 211–231

    Article  Google Scholar 

  6. Wohl K, Kapp NM, Gazley C (1948) Symp Combust Flame Explos Phenom 3(1):3–21

    Google Scholar 

  7. Pitts WM (1988) Symp (Int) Combust 22(1), 809–816

    Google Scholar 

  8. Lawn CJ (2009) Prog Energy Combust Sci 35(1), 1–30

    Article  Google Scholar 

  9. Vanquickenborne L, van Tiggelen A (1966) Combust Flame 10(1), 59–69

    Article  Google Scholar 

  10. Kalghatgi GT (1984) Combust Sci Technol 41(1–2), 17–29

    Google Scholar 

  11. Peters N, Williams FA (1983) AIAA J 21(3), 423–429

    Article  Google Scholar 

  12. Müller CM, Breitbach H, Peters N (1994) Symp (Int) Combust 25(1):1099–1106

    Google Scholar 

  13. Buckmaster J, Matalon M (1988) Symp (Int) Combust 22(1):1527–1535

    Google Scholar 

  14. Buckmaster J (2002) Prog Energy Combust Sci 28(5), 435–475

    Article  Google Scholar 

  15. Domingo P, Vervisch L (1996) Symp (Int) Combust 26(1):233–240

    Google Scholar 

  16. Broadwell JE, Dahm WJA, Mungal MG (1984) Symp (Int) Combust 20(1):303–310

    Google Scholar 

  17. Miake-Lye RC, Hammer JA (1988) Symp (Int) Combust 22(1):817–824

    Google Scholar 

  18. Feikema D, Chen RH, Driscoll JF (1990) Combust Flame 80(2), 183–195

    Article  Google Scholar 

  19. Gupta AL, Lilley DG, Syred N (1984) Swirl flows. Abacus Press, Royal Tunbridge Wells, UK

    Google Scholar 

  20. Syred N, Beér JM (1974) Combust Flame 23(2), 143–201

    Article  Google Scholar 

  21. Weigand P, Meier W, Duan XR, Stricker W, Aigner M (2006) Combust Flame 144(1–2), 205–224

    Article  Google Scholar 

  22. Meier W, Duan XR, Weigand P (2006) Combust Flame 144(1–2), 225–236

    Article  Google Scholar 

  23. Matalon M (2009) Proc Combust Inst 32(1), 57–82

    Article  Google Scholar 

  24. Lieuwen TC (2012) Unsteady Combustor Physics. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  25. Dowling AP, Mahmoudi Y (2015) Proc Combust Inst 35(1), 65–100

    Article  Google Scholar 

  26. Masri AR (2015) Proc Combust Inst 35(2), 1115–1136

    Article  Google Scholar 

  27. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  28. Gicquel LYM, Staffelbach G, Poinsot T (2012) Prog Energy Combust Sci 38(6), 782–817

    Article  Google Scholar 

  29. Pope SB (2013) Proc Combust Inst 34(1), 1–31

    Article  MathSciNet  Google Scholar 

  30. Swaminathan N, Bray KNC (eds) (2011) Turbulent premixed flames. Cambridge University Press, Cambridge, UK

    Google Scholar 

  31. Chen ZX, Langella I, Swaminathan N (2019) The role of CFD in modern jet engine combustor design. Environ Impact Aviat Sustain Solut IntechOpen

    Google Scholar 

  32. Williams FA (1985) Combustion theory, 2nd edn. Benjamin Cummings, Menlo Park, CA, USA

    Google Scholar 

  33. Hinze JO (1959) Turbulence. McGraw-Hill, New York, NY, USA

    Google Scholar 

  34. Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press

    Google Scholar 

  35. Smagorinsky J (1963) Mon. Weather Rev. 91(3), 99–164

    Article  Google Scholar 

  36. Germano M, Piomelli U, Moin P, Cabot WH (1991) Phys Fluids A Fluid Dyn 3(7), 1760–1765

    Article  Google Scholar 

  37. Moin P, Squires K, Cabot W, Lee S (1991) Phys Fluids A Fluid Dyn 3(11), 2746–2757

    Article  Google Scholar 

  38. Lilly DK (1992) Phys. Fluids A Fluid Dyn 4(3), 633–635

    Article  MathSciNet  Google Scholar 

  39. Vreman AW (2004) Phys Fluids 16(10), 3670–3681

    Article  Google Scholar 

  40. Nicoud F, Ducros F (1999) Flow Turbul Combust 62(3), 183–200

    Article  Google Scholar 

  41. Nicoud F, Toda HB, Cabrit O, Bose S, Lee J (2011) Phys Fluids 23(8):085,106

    Google Scholar 

  42. Yoshizawa A, Horiuti K (1985) J Phys Soc Japan 54(8), 2834–2839

    Article  Google Scholar 

  43. Ghosal S, Lund TS, Moin P, Akselvoll K (1995) J Fluid Mech 286:229–255

    Article  MathSciNet  Google Scholar 

  44. Kim WW, Menon S (1995) 33rd AIAA aerospace sciences meeting and exhibit. AIAA 95-0356, Reno, NV, USA

    Google Scholar 

  45. Butler TD, O’Rourke PJ (1997) Symp (Int) Combust 16(1):1503–1515

    Google Scholar 

  46. Colin O, Ducros F, Veynante D, Poinsot T (2000) Phys Fluids 12(7), 1843–1863

    Article  Google Scholar 

  47. Kerstein AR, Ashurst WT, Williams FA (1988) Phys Rev A 37(7), 2728–2731

    Article  Google Scholar 

  48. McMurtry PA, Menon S, Kerstein AR (1992) Symp (Int) Combust 24(1):271–278

    Google Scholar 

  49. Marble FE, Broadwell JE (1977) Project squid technical report TRW-9-PU. Purdue University, West Lafayette, IN, USA

    Google Scholar 

  50. Bray KNC, Cant RS (1991) Proc R Soc A 434(1890), 217–240

    Google Scholar 

  51. Hawkes ER, Cant RS (2001) Combust Flame 126(3), 1617–1629

    Article  Google Scholar 

  52. Pitsch H (2006) Annu Rev Fluid Mech 38(1), 453–482

    Article  Google Scholar 

  53. Dopazo C, O’Brien EE (1974) Phys Fluids 17(11), 1968–1975

    Article  Google Scholar 

  54. Pope SB (1985) Prog Energy Combust Sci 11(2), 119–192

    Article  Google Scholar 

  55. Valiño L (1998) Flow Turbul Combust 60(2), 157–172

    Article  Google Scholar 

  56. Rembold B, Jenny P (2006) J Comput Phys 220(1), 59–87

    Article  MathSciNet  Google Scholar 

  57. Klimenko AY (1990) Fluid Dyn 25:327–331

    Article  Google Scholar 

  58. Bilger RW (1993) Phys Fluids A Fluid Dyn 5(2), 436–444

    Article  Google Scholar 

  59. Navarro-Martinez S, Kronenburg A, Di Mare F (2005) Flow Turbul Combust 75(1–4), 245–274

    Article  Google Scholar 

  60. Klimenko AY, Pope SB (2003) Phys Fluids 15(7), 1907–1925

    Article  MathSciNet  Google Scholar 

  61. Cleary MJ, Klimenko AY (2009) Flow Turbul Combust 82(4), 477–491

    Article  Google Scholar 

  62. Libby PA, Bray KNC (1980) Combust Flame 39(1), 33–41

    Article  Google Scholar 

  63. Liew SK, Bray KNC, Moss JB (1981) Combust Sci Technol 27(1–2), 69–73

    Article  Google Scholar 

  64. Bradley D, Gaskell PH, Lau AKC (1990) Symp (Int) Combust 23(1):685–692

    Google Scholar 

  65. Bray KNC, Libby PA, Masuya G, Moss JB (1981) Combust Sci Technol 25(3–4), 127–140

    Article  Google Scholar 

  66. Libby PA, Bray KNC (1981) AIAA J 19(2), 205–213

    Article  Google Scholar 

  67. van Oijen JA, de Goey LPH (2000) Combust Sci Technol 161(1), 113–137

    Article  Google Scholar 

  68. Gicquel O, Darabiha N, Thévenin D (2000) Proc Combust Inst 28(2), 1901–1908

    Article  Google Scholar 

  69. Pierce CD, Moin P (2004) J Fluid Mech 504:73–97

    Article  MathSciNet  Google Scholar 

  70. Langella I, Swaminathan N, Pitz RW (2016) Combust Flame 173:161–178

    Article  Google Scholar 

  71. Langella I, Swaminathan N, Williams FA, Furukawa J (2016) Combust Sci Technol 188(9), 1565–1591

    Article  Google Scholar 

  72. Langella I, Swaminathan N (2016) Combust Theory Model 20(3), 410–440

    Article  MathSciNet  Google Scholar 

  73. Chen Z, Ruan S, Swaminathan N (2017) Proc Combust Inst 36(2), 1645–1652

    Article  Google Scholar 

  74. Chen ZX, Langella I, Barlow RS, Swaminathan N (2020) Combust Flame 212:415–432

    Article  Google Scholar 

  75. Langella I, Chen ZX, Swaminathan N, Sadasivuni SK (2018) J Propuls Power 34(5), 1269–1284

    Article  Google Scholar 

  76. Chen ZX, Swaminathan N, Stöhr M, Meier W (2019) Proc Combust Inst 37(2), 2325–2333

    Article  Google Scholar 

  77. Chen ZX, Langella I, Swaminathan N, Stöhr M, Meier W, Kolla H (2019) Combust Flame 203:279–300

    Article  Google Scholar 

  78. Chen ZX, Swaminathan N (2020) Fuel 275:117,868

    Google Scholar 

  79. Massey JC, Chen ZX, Swaminathan N (2019) Combust Sci Technol 191(5–6), 1019–1042

    Article  Google Scholar 

  80. Massey JC, Chen ZX, Swaminathan N (2020) Flow Turbul Combust (In press) 1–24

    Google Scholar 

  81. Bilger RW (1988) Symp (Int) Combust 22(1):475–488

    Google Scholar 

  82. Bray K, Domingo P, Vervisch L (2005) Combust Flame 141(4), 431–437

    Article  Google Scholar 

  83. Swaminathan N, Bray KNC (2005) Combust Flame 143(4), 549–565

    Article  Google Scholar 

  84. Dunstan TD, Minamoto Y, Chakraborty N, Swaminathan N (2013) Proc Combust Inst 34(1), 1193–1201

    Article  Google Scholar 

  85. Domingo P, Vervisch L, Bray K (2002) Combust Theory Model 6(4), 529–551

    Article  Google Scholar 

  86. Ruan S, Swaminathan N, Darbyshire O (2014) Combust Theory Model 18(2), 295–329

    Article  MathSciNet  Google Scholar 

  87. Chen ZX, Doan NAK, Ruan S, Langella I, Swaminathan N (2018) Combust Theory Model 22(5), 862–882

    Article  Google Scholar 

  88. Chen Z, Ruan S, Swaminathan N (2015) Combust Flame 162(3), 703–716

    Article  Google Scholar 

  89. Chen Z, Ruan S, Swaminathan N (2016) Combust Theory Model 20(4), 592–612

    Article  MathSciNet  Google Scholar 

  90. Cheng TS, Wehrmeyer JA, Pitz RW (1992) Combust Flame 91(3–4), 323–345

    Article  Google Scholar 

  91. Brockhinke A, Andresen P, Kohse-Höinghaus K (1996) Symp (Int) Combust 26(1):153–159

    Google Scholar 

  92. Brockhinke A, Haufe S, Kohse-Höinghaus K (2000) Combust Flame 121(1–2), 367–377

    Article  Google Scholar 

  93. Ahmed SF, Mastorakos E (2006) Combust Flame 146(1–2), 215–231

    Article  Google Scholar 

  94. Røkke NA, Hustad JE, Sønju OK (1994) Combust Flame 97(1), 88–106

    Article  Google Scholar 

  95. Ruan S, Chen Z, Swaminathan N (2015) 25th international colloquium on the dynamics of explosions and reactive systems. Leeds, UK

    Google Scholar 

  96. Mizobuchi Y, Tachibana S, Shinio J, Ogawa S, Takeno T (2002) Proc Combust Inst 29(2), 2009–2015

    Article  Google Scholar 

  97. Mizobuchi Y, Shinjo J, Ogawa S, Takeno T (2005) Proc Combust Inst 30(1), 611–619

    Article  Google Scholar 

  98. Darbyshire OR, Swaminathan N (2012) Combust Sci Technol 184(12), 2036–2067

    Article  Google Scholar 

  99. Kim IS, Mastorakos E (2005) Proc Combust Inst 30(1), 911–918

    Article  Google Scholar 

  100. Lacaze G, Richardson E, Poinsot T (2009) Combust Flame 156(10), 1993–2009

    Article  Google Scholar 

  101. Jones WP, Prasad VN (2011) Proc Combust Inst 33(1), 1355–1363

    Article  Google Scholar 

  102. Zhang H, Giusti A, Mastorakos E (2019) Proc Combust Inst 37(2), 2125–2132

    Article  Google Scholar 

  103. Zhang H, Mastorakos E (2019) Flow Turbul Combust 102(4), 909–930

    Article  Google Scholar 

  104. Poinsot T (2017) Proc Combust Inst 36(1), 1–28

    Article  MathSciNet  Google Scholar 

  105. Huang Y, Yang V (2009) Prog Energy Combust Sci 35(4), 293–364

    Article  Google Scholar 

  106. Stöhr M, Sadanandan R, Meier W (2009) Proc Combust Inst 32(2), 2925–2932

    Article  Google Scholar 

  107. Stöhr M, Boxx I, Carter C, Meier W (2011) Proc Combust Inst 33(2), 2953–2960

    Article  Google Scholar 

  108. Stöhr M, Arndt CM, Meier W (2015) Proc Combust Inst 35(3), 3327–3335

    Article  Google Scholar 

  109. See YC, Ihme M (2015) Proc Combust Inst 35(2), 1225–1234

    Article  Google Scholar 

  110. Benim AC, Iqbal S, Meier W, Joos F, Wiedermann A (2017) Appl Therm Eng 110:202–212

    Article  Google Scholar 

  111. Donini A, Bastiaans RJM, van Oijen JA, de Goey LPH (2017) Flow Turbul Combust 98(3), 887–922

    Article  Google Scholar 

  112. Selle L, Lartigue G, Poinsot T, Koch R, Schildmacher KU, Krebs W, Prade B, Kaufmann P, Veynante D (2004) Combust Flame 137(4), 489–505

    Article  Google Scholar 

  113. Stöhr M, Boxx I, Carter CD, Meier W (2012) Combust Flame 159(8), 2636–2649

    Article  Google Scholar 

  114. Boxx I, Stöhr M, Carter C, Meier W (2010) Combust Flame 157(8), 1510–1525

    Article  Google Scholar 

  115. Steinberg AM, Boxx I, Stöhr M, Carter CD, Meier W (2010) Combust Flame 157(12), 2250–2266

    Article  Google Scholar 

  116. Schneider D, Meier U, Quade W, Koopman J, Aumeier T, Langfeld A, Behrendt T, Hassa C, Rackwitz L (2010) 27th congress of international council of the aeronautical sciences. Nice, France

    Google Scholar 

  117. Freitag S, Behrendt T, Heinze J, Lange L, Meier U, Hassa C, Rackwitz L (2011) 24th european conference on liquid atomization and spray systems. Estoril, Portugal

    Google Scholar 

  118. Meier U, Heinze J, Lange L, Hassa C, Rackwitz L, Doerr T (2012) CEAS Aeronaut J 3(1), 45–53

    Article  Google Scholar 

  119. Meier U, Lange L, Heinze J, Hassa C, Sadig S, Luff D (2015) J Eng Gas Turbines Power 137:7

    Article  Google Scholar 

  120. Langella I, Heinze J, Behrendt T, Voigt L, Swaminathan N, Zedda M (2019) Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels, and Emissions, V04BT04A047. ASME GT2019-91879, Phoenix, AZ, USA

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Mitsubishi Heavy Industries, Ltd., Japan. This work used the ARCHER UK National Supercomputing Service (https://www.archer.ac.uk) with the resources provided by the UKCTRF (e305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Massey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Massey, J.C., Chen, Z.X., Swaminathan, N. (2022). Flame Root Dynamics and Their Role in the Stabilisation of Lifted Flames. In: Gupta, A.K., De, A., Aggarwal, S.K., Kushari, A., Runchal, A.K. (eds) Advances in Energy and Combustion. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-2648-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2648-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2647-0

  • Online ISBN: 978-981-16-2648-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics