Skip to main content

A Random Forest Classifier Combined with Missing Data Strategies for Predicting Chronic Kidney Disease Stages

  • Conference paper
  • First Online:
Proceedings of Research and Applications in Artificial Intelligence

Abstract

Chronic Kidney Disease (CKD) is a global public health problem and one of the world’s most overlooked chronic diseases. Once most CKD patients have diabetes or hypertension, the disease affects global morbidity and mortality, and care can be costly. However, through inexpensive approaches, CKD may be avoided or postponed. When the prediction is accurate, it is possible to improve quality control in diagnosing and treating CKD. We propose in this work a Random Forest (RF) classifier combined with the imputation of missing data to predict CKD stages. We tested four different scenarios, and our findings show that the RF algorithm provides higher accuracy on classification and prediction performance for determining the severity stage in CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, Y., Hu, Z.D., Liu, X.F., Deng, A.M., Hu, C.J.: An mlp classifier for prediction of hbv-induced liver cirrhosis using routinely available clinical parameters. Dis. Markers 35(6), 653–60 (2013). http://orcid.org/10.1155/2013/127962

  2. Cunningham, P., Delany, S.: k-nearest neighbour classifiers. Mult. Classif. Syst. (2007). https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.1131&rep=rep1&type=pdf

  3. Dessai, I.S.F.: Intelligent heart disease prediction system using probabilistic neural network. Int. J. Adv. Comput. Theory Eng. (IJACTE) 2(3), 2319–2526 (2013). http://www.irdindia.in/journal_ijacte/pdf/vol2_iss3/8.pdf

  4. Foundation, N.K.: Estimated glomerular filtration rate (egfr) (2020). https://www.kidney.org/atoz/content/gfr. Accessed 11 Oct 2020

  5. Foundation, N.K.: Glomerular filtration rate calculator (2020). https://www.kidney.org/professionals/kdoqi/gfr_calculator. Accessed 30 Oct 2020

  6. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451

  7. Jha, V., Garcia Garcia, G., Iseki, K., Li, Z., Naicker, S., Plattner, B., Saran, R., Wang, A., Yang, C.W.: Chronic kidney disease: global dimension and perspectives. The Lancet 382(9888), 260–272 (2013). https://doi.org/10.1016/S0140-6736(13)60687-X

  8. Levey, A., Atkins, R., Coresh, J., Cohen, E., Collins, A., Eckardt, K.U., Nahas, M., Jaber, B., Jadoul, M., Levin, A., Powe, N., Rossert, J., Wheeler, D., Lameire, N., Eknoyan, G.: Chronic kidney disease as a global public health problem: approaches and initiatives—a position statement from kidney disease improving global outcomes. Kidney Int. 72, 247–59 (2007). https://doi.org/10.1038/sj.ki.5002343

  9. Li, L., Astor, B., Lewis, J., Hu, B., Appel, L., Lipkowitz, M., Toto, R., Wang, X., Wright, J., Greene, T.: Longitudinal progression trajectory of gfr among patients with ckd. Am. J. Kidney Dis.: The Official J. Natl. Kidney Found. 59(4), 504–12 (2012). https://doi.org/10.1053/j.ajkd.2011.12.009

  10. Luo, L., Small, D., Stewart, W., Roy, J.: Methods for estimating kidney disease stage transition probabilities using electronic medical records. eGEMs Generating Evidence & Methods to Improve Patient Outcomes 1(3) (2013). https://doi.org/10.13063/2327-9214.1040

  11. Luyckx, V., Tonelli, M., Stanifer, J.: The global burden of kidney disease and the sustainable development goals. Bull. World Health Organ. 96, 414–422D (2018). https://doi.org/10.2471/BLT.17.206441

  12. Magnin, B., Mesrob, L., Kinkingnéhun, S., Pélégrini-Issac, M., Colliot, O., Sarazin, M., Dubois, B., Lehéricy, S., Benali, H.: Support vector machine-based classification of alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51(2), 73–83 (2009). http://orcid.org/10.1007/s00234-008-0463-x

  13. Pedersen, A., Mikkelsen, E., Cronin-Fenton, D., Kristensen, N., Pham, T.M., Pedersen, L., Petersen, I.: Missing data and multiple imputation in clinical epidemiological research. Clin. Epidemiol. 9, 157–166 (2017). https://doi.org/10.2147/CLEP.S129785

  14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Édouard Duchesnay: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(85), 2825–2830 (2011). https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf

  15. Rady, E.H.A., Anwar, A.S.: Prediction of kidney disease stages using data mining algorithms. Inf. Med. Unlocked 15 (2019). http://orcid.org/10.1016/j.imu.2019.100178

  16. Romão Junior, J.: Doenca renal cronica: definicao, epidemiologia e classificacao. Brazilian J. Nephrol. 26(3), 1–3 (2004). https://bjnephrology.org/article/doenca-renal-cronica-definicao-epidemiologia-e-classificacao

  17. Roth, G., Abate, D., Abate, K., Abay, S., Cristiana, A., Abbasi, N., Abbastabar, H., Abd-Allah, F., Ebro, J., Abdelalim, A., Abdollahpour, I., Suliankatchi, R., Abebe, H., Abebe, M., Abebe, Z., Abejie, A., Abera, S., Zewdie, O., Niguse, H.: Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of disease study 2017. The Lancet 392(10159), 1736–1788 (2018). https://doi.org/10.1016/S0140-6736(18)32203-7

  18. Thomé, F.S., Sesso, R.C., Lopes, A.A., Lugon, J.R., Martins, C.T.: Brazilian chronic dialysis survey 2017. Braz. J. Nephrol. 41, 208–214 (2019). https://doi.org/10.1590/2175-8239-jbn-2018-0178

  19. Yu, W., Liu, T., Valdez, R., Gwinn, M., Khoury, M.J.: Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Med. Inf. Decis. Making 10(1), 16 (2010). http://orcid.org/10.1186/1472-6947-10-16

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João P. Scoralick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scoralick, J.P., Iwashima, G.C., Colugnati, F.A.B., Goliatt, L., Capriles, P.V.S.Z. (2021). A Random Forest Classifier Combined with Missing Data Strategies for Predicting Chronic Kidney Disease Stages. In: Pan, I., Mukherjee, A., Piuri, V. (eds) Proceedings of Research and Applications in Artificial Intelligence. Advances in Intelligent Systems and Computing, vol 1355. Springer, Singapore. https://doi.org/10.1007/978-981-16-1543-6_24

Download citation

Publish with us

Policies and ethics