Skip to main content

Localization and Navigation

  • Chapter
  • First Online:
Embedded Robotics
  • 2673 Accesses

Abstract

Localization and navigation are the two most important tasks for mobile robots. We want to know where we are at any point in time, and we need to be able to make a plan for how to reach the goal destination. Of course, these two problems are not isolated from each other, but rather closely linked. If a robot does not know its exact position at the start of a planned trajectory, it will encounter problems in reaching its destination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    J. Craig, Introduction to Robotics – Mechanics and Control, 2nd Ed., Addison-Wesley, Reading MA, 1989.

  2. 2.

    R. Arkin, Behavior-Based Robotics, MIT Press, Cambridge MA, 1998.

  3. 3.

    Wikipedia, Liang-Barsky algorithm, online: https://en.wikipedia.org/wiki/Liang-Barsky_algorithm.

  4. 4.

    Wikipedia, Cohen-Sutherland algorithm, online: https://en.wikipedia.org/wiki/Cohen-Sutherland_algorithm.

  5. 5.

    Alejo, Stack Overflow, How to test if a line segment intersects an axis-aligned rectangle in 2D?, online: https://stackoverflow.com/questions/99353/how-to-test-if-a-line-segment-intersects-an-axis-aligned-rectange-in-2d.

  6. 6.

    A. Yahja, A. Stentz, S. Singh, B. Brummit, Framed-Quadtree Path Planning for Mobile Robots Operating in Sparse Environments, IEEE Conference on Robotics and Automation (ICRA), Leuven Belgium, May 1998, pp. (6).

  7. 7.

    A. Bicchi, G. Casalino, C. Santilli, Planning Shortest Bounded-Curvature Paths, Journal of Intelligent and Robotic Systems, vol. 16, no. 4, Aug. 1996, pp. 387–405 (9).

  8. 8.

    J. Hopcroft, J. Schwartz, M. Sharir, Planning, geometry, and complexity of robot motion, Ablex Publishing, Norwood NJ, 1987.

  9. 9.

    G. Voronoi, Nouvelles applications des parametres continus – la theorie des formes quadratiques, Journal für die Reine und Angewandte Mathematik, vol. 133, 1907, pp. 97–178 (82).

  10. 10.

    G. Dirichlet, Über die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen, Journal für die Reine und Angewandte Mathematik, vol. 40, 1850, pp. 209–227 (19).

  11. 11.

    B. Delaunay, Sur la sphere vide, Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, vol. 7, 1934, pp. 793–800 (8).

  12. 12.

    J. Lengyel, M. Reichert, B. Donald, D. Greenberg, Real-time robot motion planning using rasterizing computer graphics hardware, Proceedings of ACM SIGGRAPH 90, Computer Graphics vol. 24, no. 4, 1990, 327–335 (9).

  13. 13.

    M. Arbib, D. House, Depth and Detours: An Essay on Visually Guided Behavior, in M. Arbib, A. Hanson (Eds.), Vision, Brain and Cooperative Computation, MIT Press, Cambridge MA, 1987, pp. 129–163 (35).

  14. 14.

    Y. Koren, J. Borenstein, Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation, Proceedings of the IEEE Conference on Robotics and Automation, Sacramento CA, April 1991, pp. 1398–1404 (7).

  15. 15.

    J. Borenstein, H. Everett, L. Feng, Navigating Mobile Robots: Sensors and Techniques, AK Peters, Wellesley MA, 1998.

  16. 16.

    E. von Puttkamer, Autonome Mobile Roboter, Lecture notes, Univ. Kaiserslautern, Fachbereich Informatik, 2000.

  17. 17.

    V. Lumelsky, A. Stepanov, Dynamic Path Planning for a Mobile Automaton with Limited Information on the Environment, IEEE Transactions on Automatic Control, vol. 31, Nov. 1986, pp. 1058—1063 (6).

  18. 18.

    I. Kamon, E. Rivlin, Sensory-Based Motion Planning with Global Proofs, IEEE Transactions on Robotics and Automation, vol. 13, no. 6, Dec. 1997, pp. 814–822 (9).

  19. 19.

    J. Ng, T. Bräunl, Performance Comparison of Bug Navigation Algorithms, Journal of Intelligent and Robotic Systems, Springer-Verlag, no. 50, 2007, pp. 73–84 (12).

  20. 20.

    E. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, Springer-Verlag, Heidelberg, vol. 1, pp. 269–271 (3), 1959.

  21. 21.

    P. Hart, N. Nilsson, B. Raphael, A Formal Basis for the Heuristic Determination of Minimum Cost Paths, IEEE Transactions on Systems Science and Cybernetics, vol. SSC-4, no. 2, 1968, pp. 100–107 (8).

  22. 22.

    H. Choset, K Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press, Cambridge MA, 2005.

  23. 23.

    H. Choset, K Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press, Cambridge MA, 2005.

  24. 24.

    H. Durrant-Whyte, T. Bailey, Simultaneous Localisation and Mapping (SLAM): Part I, IEEE Robotics & Automation Magazine, vol. 13, no. 2, June 2006, pp. 99–110.

  25. 25.

    T. Bailey, H. Durrant-Whyte, Simultaneous Localisation and Mapping (SLAM),: Part II, IEEE Robotics & Automation Magazine, vol. 13, no. 3, Sep. 2006, pp. 108–117.

  26. 26.

    ROS, Robot Operating System, online; https://www.ros.org.

  27. 27.

    S. Levy, BreezySLAM, Washington and Lee University, Lexington, VA, 2019, online: https://github.com/simondlevy/BreezySLAM.

  28. 28.

    B. Steux, O. El Hamzaoui, tinySLAM: a SLAM Algorithm in less than 200 lines C-Language Program, 11th Int. Conf. on Control, Automation, Robotics and Vision (ICARV), Singapore, 7–10th December 2010, pp. 1975–1979 (5).

  29. 29.

    OpenSLAM/tinySlam, online: https://github.com/OpenSLAM-org/openslam_tinyslam.

  30. 30.

    Google, Cartographer ROS Intewgration, online: https://google-cartographer-ros.readthedocs.io/en/latest/.

  31. 31.

    R. Mur-Artal, J. Tardos, ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras, online: https://arxiv.org/abs/1610.06475.

  32. 32.

    Y. Du, LiDAR-based Simultaneous Localization and Mapping System for nUWAy, Master thesis, supervised by T. Bräunl, UWA 2020, online https://robotics.ee.uwa.edu.au/theses/2020-REV-ShuttleNavigation-Du.pdf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bräunl .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bräunl, T. (2022). Localization and Navigation. In: Embedded Robotics. Springer, Singapore. https://doi.org/10.1007/978-981-16-0804-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0804-9_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0803-2

  • Online ISBN: 978-981-16-0804-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics