Skip to main content

Walking Robots

  • Chapter
  • First Online:
Embedded Robotics
  • 2663 Accesses

Abstract

Walking robots are an important alternative to driving robots, since the majority of the world’s land area is unpaved. Although driving robots are more specialized and better adapted to flat surfaces—they can drive faster and navigate with higher precision—walking robots can be employed in more general environments. Walking robots follow nature by being able to navigate rough terrain, or even climb stairs or step over obstacles in a standard household situation, which would rule out most driving robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    U. Rückert, J. Sitte, U. Witkowski (Eds.), Autonomous Minirobots for Research and Edutainment—AMiRE2001, Proceedings of the 5th International Heinz Nixdorf Symposium, HNI-Verlagsschriftenreihe, no. 97, Univ. Paderborn, Oct. 2001.

  2. 2.

    H. Cho, J.-J. Lee (Eds.) Proceedings 2002 FIRA Robot World Congress, Seoul, Korea, May 2002.

  3. 3.

    Segway, Welcome to the evolution in mobility, http://www.segway.com, 2020.

  4. 4.

    S. Caux, E. Mateo, R. Zapata, Balance of biped robots: special double-inverted pendulum, IEEE International Conference on Systems, Man, and Cybernetics, 1998, pp. 3691–3696 (6).

  5. 5.

    S. Kajita, K. Tani, Experimental Study of Biped Dynamic Walking in the Linear Inverted Pendulum Mode, IEEE Control Systems Magazine, vol. 16, no. 1, Feb. 1996, pp. 13–19 (7).

  6. 6.

    K. Ogasawara, S. Kawaji, Cooperative motion control for biped locomotion robots, IEEE International Conference on Systems, Man, and Cybernetics, 1999, pp. 966–971 (6).

  7. 7.

    J. Park, K. Kim, Bipedal Robot Walking Using Gravity-Compensated Inverted Pendulum Mode and Computed Torque Control, IEEE International Conference on Robotics and Automation, 1998, pp. 3528–3533 (6).

  8. 8.

    A. Sutherland, Torso Driven Walking Algorithm for Dynamically Balanced Variable Speed Biped Robots, Ph.D. Thesis, supervised by T. Bräunl, The University of Western Australia, June 2006, pp. (398), web: http://robotics.ee.uwa.edu.au/theses/2006-Biped-Suther-land-PhD.pdf.

  9. 9.

    A. Sutherland, T. Bräunl, Learning to Balance an Unknown System, Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Humanoids 2001, Waseda University, Tokyo, Nov. 2001, pp. 385–391 (7).

  10. 10.

    A. Sutherland, T. Bräunl, An Experimental Platform for Researching Robot Balance, 2002 FIRA Robot World Congress, Seoul, May 2002, pp. 14–19 (6).

  11. 11.

    R. Ooi, Balancing a Two-Wheeled Autonomous Robot, B.E. Honours Thesis, The Univ. of Western Australia, Mechanical Eng., supervised by T. Bräunl, 2003, p. 56.

  12. 12.

    R. Kalman A New Approach to Linear Filtering and Prediction Problems, Transactions of the ASME—Journal of Basic Engineering, Series D, vol. 82, 1960, pp. 35–45.

  13. 13.

    D. Del Gobbo, M. Napolitano, P. Famouri, M. Innocenti, Experimental application of extended Kalman filtering for sensor validation, IEEE Transactions on Control Systems Technology, vol. 9, no. 2, 2001, pp. 376–380 (5).

  14. 14.

    R. Nakajima, T. Tsubouchi, S. Yuta, E. Koyanagi, A Development of a New Mechanism of an Autonomous Unicycle, IEEE International Conference on Intelligent Robots and Systems, IROS 1997, vol. 2, 1997, pp. 906–912 (7).

  15. 15.

    Y. Takahashi, N. Ishikawa, T. Hagiwara, Inverse pendulum controlled two wheel drive system, Proceedings of the 40th SICE Annual Conference, International Session Papers, SICE 2001, 2001, pp. 112–115 (4).

  16. 16.

    Lynxmotion, Lynxmotion – Imagine it. Build it. Control it., online: http://www.lynxmotion.com.

  17. 17.

    E. Nicholls, Bipedal Dynamic Walking in Robotics, B.E. Honours Thesis, The Univ. of Western Australia, Electrical and Computer Eng., supervised by T. Bräunl, 1998.

  18. 18.

    T. Bräunl, A. Sutherland, A. Unkelbach, Dynamic Balancing of a Humanoid Robot, FIRA 1st Humanoid Robot Soccer Workshop (HuroSot), Daejeon Korea, Jan. 2002, pp. 19-23 (5).

  19. 19.

    J. Zimmermann, Balancing of a Biped Robot using Force Feedback, Diploma Thesis, F.H. Koblenz/The Univ. of Western Australia, supervised by T. Bräunl, 2004.

  20. 20.

    T. Bräunl, Design of Low-Cost Android Robots, Proceedings of the First IEEE-RAS International Conference on Humanoid Robots, Humanoids 2000, MIT, Boston, Sept. 2000, pp. 1–6 (6).

  21. 21.

    G. Montgomery, Robo Crop—Inside our AI Labs, Australian Personal Computer, Issue 274, Oct. 2001, pp. 80–92 (13).

  22. 22.

    A. Sutherland, T. Bräunl, T. Learning to Balance an Unknown System, Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Humanoids 2001, Waseda University, Tokyo, Nov. 2001, pp. 385–391 (7).

  23. 23.

    T. Bräunl, A. Sutherland, A. Unkelbach, Dynamic Balancing of a Humanoid Robot, FIRA 1st Humanoid Robot Soccer Workshop (HuroSot), Daejeon Korea, Jan. 2002, pp. 19–23 (5).

  24. 24.

    H. Harada, Andy 2 Visualization Video, 2006, online: http://robotics.ee.uwa.edu.au/eyebot5/mpg/walk-2leg/.

  25. 25.

    E. Nicholls, Bipedal Dynamic Walking in Robotics, B.E. Honours Thesis, The Univ. of Western Australia, Electrical and Computer Eng., supervised by T. Bräunl, 1998.

  26. 26.

    A. Unkelbach, Analysis of sensor data for balancing and walking of a biped robot, Project Thesis, Univ. Kaiserslautern/The Univ. of Western Australia, supervised by T. Bräunl and D. Henrich, 2002.

  27. 27.

    Y. Fujimoto, A. Kawamura, Simulation of an autonomous biped walking robot including environmental force interaction, IEEE Robotics and Automation Magazine, June 1998, pp. 33–42 (10).

  28. 28.

    R. Goddard, Y. Zheng, H. Hemami, Control of the heel-off to toe-off motion of a dynamic biped gait, IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, no. 1, 1992, pp. 92–102 (11).

  29. 29.

    S. Kajita, T. Yamaura, A. Kobayashi, Dynamic walking control of a biped robot along a potential energy conserving orbit, IEEE Transactions on Robotics and Automation, Aug. 1992, pp. 431–438 (8).

  30. 30.

    A. Takanishi, M. Ishida, Y. Yamazaki, I. Kato, The realization of dynamic walking by the biped walking robot WL-10RD, in ICAR’85, 1985, pp. 459–466 (8)

  31. 31.

    S. Caux, E. Mateo, R. Zapata, Balance of biped robots: special double-in- verted pendulum, IEEE International Conference on Systems, Man, and Cybernetics, 1998, pp. 3691–3696 (6).

  32. 32.

    J. Park, K. Kim, Bipedal Robot Walking Using Gravity-Compensated In- verted Pendulum Mode and Computed Torque Control, IEEE International Conference on Robotics and Automation, 1998, pp. 3528–3533 (6).

  33. 33.

    A. Sutherland, T. Bräunl, Learning to Balance an Unknown System, Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Humanoids 2001, Waseda University, Tokyo, Nov. 2001, pp. 385–391 (7).

  34. 34.

    W. Miller III, Real-time neural network control of a biped walking robot, IEEE Control Systems, Feb. 1994, pp. 41–48 (8).

  35. 35.

    P. Doerschuk, V. Nguyen, A. Li, Neural network control of a three-link leg, in Proceedings of the International Conference on Tools with Artificial Intelligence, 1995, pp. 278–281 (4).

  36. 36.

    A. Kun, W. Miller III, Adaptive dynamic balance of a biped using neural networks, in Proceedings of the 1996 IEEE Intl. Conference on Robotics and Automation, Apr. 1996, pp. 240–245 (6).

  37. 37.

    A. Boeing, T. Bräunl, Evolving Splines: An alternative locomotion controller for a bipedal robot, Seventh International Conference on Control, Automation, Robotics and Vision, ICARV 2002, CD-ROM, Singapore, Dec. 2002, pp. 1–5 (5).

  38. 38.

    A. Boeing, T. Bräunl, Evolving a Controller for Bipedal Locomotion, Proceedings of the Second International Symposium on Autonomous Minirobots for Research and Edutainment, AMiRE 2003, Brisbane, Feb. 2003, pp. 43–52 (10).

  39. 39.

    T. Bräunl, Design of Low-Cost Android Robots, Proceedings of the First IEEE-RAS International Conference on Humanoid Robots, Humanoids 2000, MIT, Boston, Sept. 2000, pp. 1–6 (6).

  40. 40.

    T. Bräunl, A. Sutherland, A. Unkelbach, Dynamic Balancing of a Humanoid Robot, FIRA 1st Humanoid Robot Soccer Workshop (HuroSot), Daejeon Korea, Jan. 2002, pp. 19–23 (5).

  41. 41.

    C. Lee, A. Zaknich, T. Bräunl, A Framework of Adaptive T-S type Rough-Fuzzy Inference Systems (ARFIS), FUZZ-IEEE 2008, 2008 World Congress on Computational Intelligence (WCCI), Ed. By G. Feng, 2008, pp. 567–574 (8).

  42. 42.

    C. Lee, A. Zaknich, T. Bräunl, An Adaptive T-S type Rough-Fuzzy Inference System (ARFIS) for Pattern Classification, Annual Meeting of the North American Fuzzy Information Processing Society, IEEE NAFIPS, Eds. S. Rubin, M. Berthold, M. Reformat, San Diego, June 2007, p. 6.

  43. 43.

    M. Wicke, Bipedal Walking, Project Thesis, Univ. Kaiserslautern / The Univ. of Western Australia, supervised by T. Bräunl, M. Kasper and E. von Puttkamer, 2001.

  44. 44.

    K. Jungpakdee, Design and construction of a minimal biped walking mechanism, B.E. Honours Thesis, The Univ. of Western Australia, Dept. of Mechanical Eng., supervised by T. Bräunl and K. Miller, 2002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bräunl .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bräunl, T. (2022). Walking Robots. In: Embedded Robotics. Springer, Singapore. https://doi.org/10.1007/978-981-16-0804-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0804-9_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0803-2

  • Online ISBN: 978-981-16-0804-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics