Abstract
With the rapid development and popularity of the World Wide Web, the Internet has entered the Web 2.0 and social network era. In Web 1.0, the Internet was characterized by static web pages. Web 2.0 refers to a World Wide Web that highlights user-generated content. Social networks are represented by a number of online tools and platforms, such as Twitter, Facebook, Weibo, and WeChat, where people share their perspectives, opinions, thoughts, and experiences. These online platforms contain innumerable subjective texts regarding different topics and events that fully reflect the individual opinions, sentiments, attitudes, and emotions of all of society.
Studying how to use computers to analyze, mine, and manage such subjective text is of great practical significance to nations, governments, enterprises, and individuals. National security agencies need to observe the content of these networks and identify possible responses, fraud, and invalid information dissemination to ensure network security; governments need to track public opinion to improve their policies and regulations; enterprises need to quickly understand the user’s opinions, comments, and suggestions based on network information to improve the quality of their products and services; when purchasing products, individuals want to quickly and accurately capture the pros and cons of products and make better choices and decisions.
Sentiment analysis, also called opinion mining, is the field of study that analyzes such subjectivities in texts. In this chapter, we will first introduce the categorization of sentiment analysis. Then, we will introduce sentiment analysis methods at different levels. We finally discuss two special issues in sentiment analysis, including polarity shift and domain adaptation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Andreevskaia, A., & Bergler, S. (2006). Mining wordnet for a fuzzy sentiment: Sentiment tag extraction from wordnet glosses. In Proceedings of EACL (pp. 209–216).
Aue, A., & Gamon, M. (2005). Customizing sentiment classifiers to new domains: A case study. In Proceedings of RANLP.
Baccianella, S., Esuli, A., & Sebastiani, F. (2010). SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In Proceedings of LREC (pp. 2200–2204).
Bickel, S., Brückner, M., & Scheffer, T. (2009). Discriminative learning under covariate shift. Journal of Machine Learning Research, 10(9), 2137–2155.
Blair-Goldensohn, S., Hannan, K., McDonald, R., Neylon, T., Reis, G., & Reynar, J. (2008). Building a sentiment summarizer for local service reviews. In Proceedings of WWW Workshop Track (pp. 339–348).
Blitzer, J., Dredze, M., & Pereira, F. (2007). Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Proceedings of ACL (pp. 440–447).
Brody, S., & Elhadad, N. (2010). An unsupervised aspect-sentiment model for online reviews. In Proceedings of NAACL (pp. 804–812).
Chen, P., Sun, Z., Bing, L., & Yang, W. (2017a). Recurrent attention network on memory for aspect sentiment analysis. In Proceedings of EMNLP (pp. 452–461).
Chernyshevich, M. (2014). IHS R&D belarus: Cross-domain extraction of product features using CRF. In Proceedings of SemEval (pp. 309–313).
Choi, Y., & Cardie, C. (2008). Learning with compositional semantics as structural inference for subsentential sentiment analysis. In Proceedings of EMNLP (pp. 793–801).
Cui, H., Mittal, V., & Datar, M. (2006). Comparative experiments on sentiment classification for online product reviews. In Proceedings of AAAI.
Das, S., & Chen, M. (2001). Yahoo! for amazon: Extracting market sentiment from stock message boards. In Proceedings of APFA, Bangkok, Thailand (Vol. 35, p. 43)
Das, S. R., & Chen, M. Y. (2007). Yahoo! for amazon: Sentiment extraction from small talk on the web. Management Science, 53, 1375–1388.
Dave, K., Lawrence, S., & Pennock, D. (2003). Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In Proceedings of WWW (pp. 519–528).
Ding, X., & Liu, B. (2007). The utility of linguistic rules in opinion mining. In Proceedings of SIGIR (pp. 811–812).
Ding, X., Liu, B., & Yu, P. (2008). A holistic lexicon-based approach to opinion mining. In Proceedings of the 2008 International Conference on Web Search and Data Mining (pp. 231–240).
Ding, Y., Yu, J., & Jiang, J. (2017). Recurrent neural networks with auxiliary labels for cross-domain opinion target extraction. In Proceedings of AAAI (pp. 3436–3442).
Ding, Z., He, H., Zhang, M., & Xia, R. (2019). From independent prediction to reordered prediction: Integrating relative position and global label information to emotion cause identification. In Proceedings of AAAI (Vol. 33, pp. 6343–6350).
Ding, Z., Xia, R., & Yu, J. (2020). ECPE-2D: Emotion-cause pair extraction based on joint two-dimensional representation, interaction and prediction. In Proceedings of ACL (pp. 3161–3170). Stroudsburg: Association for Computational Linguistics.
Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., & Xu, K. (2014). Adaptive recursive neural network for target-dependent twitter sentiment classification. In Proceedings of ACL (pp. 49–54).
Ekman, P., Friesen, W. V., & Ellsworth, P. (1972). Emotion in the human face: Guide-lines for research and an integration of findings: Guidelines for research and an integration of findings. Elmsford, NY: Pergamon.
Esuli, A., & Sebastiani, F. (2007). Pageranking wordnet synsets: An application to opinion mining. In Proceedings of ACL (pp. 424–431).
Gamon, M. (2004). Sentiment classification on customer feedback data: Noisy data, large feature vectors, and the role of linguistic analysis. In Proceedings of COLING (pp. 841–847). Stroudsburg: Association for Computational Linguistics.
Gui, L., Wu, D., Xu, R., Lu, Q., & Zhou, Y. (2016). Event-driven emotion cause extraction with corpus construction. In Proceedings of EMNLP (pp. 1639–1649). Singapore: World Scientific.
Hatzivassiloglou, V., & McKeown, K. R. (1997). Predicting the semantic orientation of adjectives. In Proceedings of EACL (pp. 174–181). Stroudsburg: Association for Computational Linguistics.
Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of ACM SIGKDD (pp. 168–177).
Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B., & Smola, A. J. (2007). Correcting sample selection bias by unlabeled data. In Advances in Neural Information Processing Systems (pp. 601–608).
Ikeda, D., Takamura, H., Ratinov, L., & Okumura, M. (2008). Learning to shift the polarity of words for sentiment classification. In Proceedings of IJCNLP (pp. 296–303).
Irsoy, O., & Cardie, C. (2014). Deep recursive neural networks for compositionality in language. In Advances in Neural Information Processing Systems (pp. 2096–2104).
Jakob, N., & Gurevych, I. (2010). Extracting opinion targets in a single and cross-domain setting with conditional random fields. In Proceedings of EMNLP (pp. 1035–1045). Cambridge, MA: Association for Computational Linguistics.
Jiang, J., & Zhai, C. (2007). Instance weighting for domain adaptation in NLP. In Proceedings of ACL (pp. 264–271).
Jiang, L., Yu, M., Zhou, M., Liu, X., & Zhao, T. (2011). Target-dependent twitter sentiment classification. In Proceedings of NAACL (pp. 151–160). Stroudsburg: Association for Computational Linguistics.
Jin, W., Ho, H. H., & Srihari, R. K. (2009). A novel lexicalized HMM-based learning framework for web opinion mining. In Proceedings of the 26th Annual International Conference on Machine Learning (Vol. 10). Citeseer.
Jo, Y., & Oh, A. H. (2011). Aspect and sentiment unification model for online review analysis. In Proceedings of WSDM (pp. 815–824).
Kamps, J., Marx, M., Mokken, R. J., & De Rijke, M. (2004). Using wordnet to measure semantic orientations of adjectives. In Proceedings of LREC (Vol. 4, pp. 1115–1118). Citeseer.
Kanayama, H., & Nasukawa, T. (2006). Fully automatic lexicon expansion for domain-oriented sentiment analysis. In Proceedings of EMNLP (pp. 355–363).
Kennedy, A., & Inkpen, D. (2006). Sentiment classification of movie reviews using contextual valence shifters. Computational Intelligence, 22(2), 110–125.
Kim, S.-M., & Hovy, E. (2004). Determining the sentiment of opinions. In Proceedings of COLING (pp. 1367–1373). Stroudsburg: Association for Computational Linguistics.
Kiritchenko, S., Zhu, X., Cherry, C., & Mohammad, S. (2014). NRC-Canada-2014: Detecting aspects and sentiment in customer reviews. In Proceedings of SemEval 2014 (pp. 437–442).
Kobayashi, N., Inui, K., & Matsumoto, Y. (2007). Extracting aspect-evaluation and aspect-of relations in opinion mining. In Proceedings of EMNLP and CoNLL (pp. 1065–1074).
Ku, L.-W., Liang, Y.-T., & Chen, H.-H. (2006). Opinion extraction, summarization and tracking in news and blog corpora. In Proceedings of AAAI (pp. 100–107).
Li, S., & Huang, C.-R. (2009). Sentiment classification considering negation and contrast transition. In Proceedings of PACLIC (pp. 307–316).
Li, S., Lee, S. Y., Chen, Y., Huang, C.-R., & Zhou, G. (2010a). Sentiment classification and polarity shifting. In Proceedings of COLING (pp. 635–643).
Li, S., Xia, R., Zong, C., & Huang, C.-R. (2009a). A framework of feature selection methods for text categorization. In Proceedings of ACL-IJCNLP (pp. 692–700).
Li, T., Zhang, Y., & Sindhwani, V. (2009b). A non-negative matrix tri-factorization approach to sentiment classification with lexical prior knowledge. In Proceedings of ACL-IJCNLP (pp. 244–252). Stroudsburg: Association for Computational Linguistics.
Li, X., Dong, Y., & Li, J. (2010b). Data mining and knowledge discovering. Beijing: High Education Press (in Chinese).
Li, X., & Lam, W. (2017). Deep multi-task learning for aspect term extraction with memory interaction. In Proceedings of EMNLP (pp. 616–626).
Li, Z., Wei, Y., Zhang, Y., & Yang, Q. (2018). Hierarchical attention transfer network for cross-domain sentiment classification. In Proceedings of AAAI (pp. 5852–5859).
Li, Z., Zhang, Y., Wei, Y., Wu, Y., & Yang, Q. (2017c). End-to-end adversarial memory network for cross-domain sentiment classification. In Proceedings of IJCAI (pp. 2237–2243).
Lin, C., & He, Y. (2009). Joint sentiment/topic model for sentiment analysis. In Proceedings of CIKM (pp. 375–384).
Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1–167.
Liu, B. (2015). Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge: Cambridge University Press.
Liu, J., & Zhang, Y. (2017). Attention modeling for targeted sentiment. In Proceedings of EACL (pp. 572–577).
Liu, P., Joty, S., & Meng, H. (2015b). Fine-grained opinion mining with recurrent neural networks and word embeddings. In Proceedings of EMNLP (pp. 1433–1443).
Ma, D., Li, S., Zhang, X., & Wang, H. (2017). Interactive attention networks for aspect-level sentiment classification. In Proceedings of IJCAI (pp. 4068–4074).
Mao, Y., & Lebanon, G. (2007). Isotonic conditional random fields and local sentiment flow. In Advances in Neural Information Processing Systems (pp. 961–968).
McDonald, R., Hannan, K., Neylon, T., Wells, M., & Reynar, J. (2007). Structured models for fine-to-coarse sentiment analysis. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics (pp. 432–439). Prague: Association for Computational Linguistics.
Mei, Q., Ling, X., Wondra, M., Su, H., & Zhai, C. (2007). Topic sentiment mixture: Modeling facets and opinions in weblogs. In Proceedings of WWW (pp. 171–180).
Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., & Cherry, C. (2016). SemEval-2016 task 6: Detecting stance in tweets. In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016) (pp. 31–41). San Diego, CA: Association for Computational Linguistics.
Mohammad, S., Kiritchenko, S., & Zhu, X. (2013). NRC-Canada: Building the state-of-the-art in sentiment analysis of tweets. In Proceedings of SemEval (pp. 321–327). Atlanta, GA: Association for Computational Linguistics.
Mukherjee, A., & Liu, B. (2012). Aspect extraction through semi-supervised modeling. In Proceedings of ACL (pp. 339–348). Stroudsburg: Association for Computational Linguistics.
Mullen, T., & Collier, N. (2004). Sentiment analysis using support vector machines with diverse information sources. In Proceedings of EMNLP (pp. 412–418).
Na, J.-C., Sui, H., Khoo, C. S., Chan, S., & Zhou, Y. (2004). Effectiveness of simple linguistic processing in automatic sentiment classification of product reviews. In Knowledge Organization and the Global Information Society: Proceedings of the Eighth International ISKO Conference (pp. 49–54).
Nakagawa, T., Inui, K., & Kurohashi, S. (2010). Dependency tree-based sentiment classification using CRFs with hidden variables. In Proceedings of NAACL (pp. 786–794).
Ng, V., Dasgupta, S., & Arifin, S. N. (2006). Examining the role of linguistic knowledge sources in the automatic identification and classification of reviews. In Proceedings of COLING/ACL (pp. 611–618).
Orimaye, S. O., Alhashmi, S. M., & Siew, E.-G. (2012). Buy it-don’t buy it: Sentiment classification on amazon reviews using sentence polarity shift. In Proceedings of PRICAI (pp. 386–399). Berlin: Springer.
Pan, S. J., Ni, X., Sun, J.-T., Yang, Q., & Chen, Z. (2010a). Cross-domain sentiment classification via spectral feature alignment. In Proceedings of WWW (pp. 751–760).
Pan, S. J., Tsang, I. W., Kwok, J. T., & Yang, Q. (2010b). Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 22(2), 199–210.
Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.
Pang, B., & Lee, L. (2004). A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proceedings of ACL (pp. 271–278). Stroudsburg: Association for Computational Linguistics.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135.
Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of EMNLP (pp. 79–86). Stroudsburg: Association for Computational Linguistics.
Plutchik, R., & Kellerman, H. (1986). Emotion: Theory, research and experience. Volume 3 in biological foundations of emotions. Oxford: Pergamon.
Polanyi, L., & Zaenen, A. (2006). Contextual valence shifters. In Computing attitude and affect in text: Theory and applications (pp. 1–10). Berlin: Springer.
Popescu, A.-M., & Etzioni, O. (2007). Extracting product features and opinions from reviews. In Natural language processing and text mining (pp. 9–28). Berlin: Springer.
Qian, Q., Huang, M., Lei, J., & Zhu, X. (2017). Linguistically regularized LSTM for sentiment classification. In Proceedings of ACL (pp. 1679–1689).
Qiu, G., Liu, B., Bu, J., & Chen, C. (2011). Opinion word expansion and target extraction through double propagation. Computational Linguistics, 37(1), 9–27.
Shimodaira, H. (2000). Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference, 90(2), 227–244.
Snyder, B., & Barzilay, R. (2007). Multiple aspect ranking using the good grief algorithm. In Proceedings of NAACL (pp. 300–307). Rochester, NY: Association for Computational Linguistics.
Socher, R., Huval, B., Manning, C. D., & Ng, A. Y. (2012). Semantic compositionality through recursive matrix-vector spaces. In Proceedings of EMNLP (pp. 1201–1211). Stroudsburg: Association for Computational Linguistics.
Socher, R., Lin, C. C., Manning, C., & Ng, A. Y. (2011a). Parsing natural scenes and natural language with recursive neural networks. In Proceedings of ICML (pp. 129–136).
Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., et al.(2013). Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (pp. 1631–1642).
Strapparava, C., & Valitutti, A. (2004). Wordnet affect: An affective extension of wordnet. In Proceedings of LREC (Vol. 4, p. 40). Citeseer.
Sugiyama, M., Nakajima, S., Kashima, H., Buenau, P. V., & Kawanabe, M. (2008). Direct importance estimation with model selection and its application to covariate shift adaptation. In Advances in Neural Information Processing Systems (pp. 1433–1440).
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37(2), 267–307.
Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic representations from tree-structured long short-term memory networks. Proceedings of ACL and IJCNLP (pp. 1556–1565).
Tang, D., Qin, B., Feng, X., & Liu, T. (2015a). Effective LSTMs for target-dependent sentiment classification. Proceedings of COLING (pp. 3298–3307).
Tang, D., Qin, B., & Liu, T. (2015b). Document modeling with gated recurrent neural network for sentiment classification. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 1422–1432).
Tang, D., Qin, B., & Liu, T. (2016). Aspect level sentiment classification with deep memory network. Proceedings of EMNLP (pp. 3298–3307).
Tang, D., Wei, F., Qin, B., Zhou, M., & Liu, T. (2014a). Building large-scale twitter-specific sentiment lexicon: A representation learning approach. In Proceedings of COLING (pp. 172–182).
Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., & Qin, B. (2014b). Learning sentiment-specific word embedding for twitter sentiment classification. In Proceedings of ACL (pp. 1555–1565).
Thet, T. T., Na, J.-C., & Khoo, C. S. G. (2010). Aspect-based sentiment analysis of movie reviews on discussion boards. Journal of Information Science, 36, 823–848.
Titov, I., & McDonald, R. (2008). A joint model of text and aspect ratings for sentiment summarization. In Proceedings of ACL (pp. 308–316). Columbus, OH: Association for Computational Linguistics.
Toh, Z., & Wang, W. (2014). DLIREC: Aspect term extraction and term polarity classification system. In Association for Computational Linguistics and Dublin City University (pp. 235–240). Citeseer.
Turney, P. D. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In Proceedings of ACL (pp. 417–424). Stroudsburg: Association for Computational Linguistics.
Turney, P. D., & Littman, M. L. (2003). Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems (TOIS), 21(4):315–346.
Vo, D.-T., & Zhang, Y. (2015). Target-dependent twitter sentiment classification with rich automatic features. In Proceedings of IJCAI (pp. 1347–1353).
Vo, D. T., & Zhang, Y. (2016). Don’t count, predict! an automatic approach to learning sentiment lexicons for short text. In Proceedings of ACL (pp. 219–224). Berlin: Association for Computational Linguistics.
Wang, K., & Xia, R. (2015). An approach to Chinese sentiment lexicon construction based on conjunction relation. In Proceedings of CCL.
Wang, K., & Xia, R. (2016). A survey on automatical construction methods of sentiment lexicons. Acta Automatica Sinica, 42(4), 495–511.
Wang, L., & Xia, R. (2017). Sentiment lexicon construction with representation learning based on hierarchical sentiment supervision. In Proceedings of EMNLP (pp. 502–510).
Wang, W. Y., Mehdad, Y., Radev, D. R., & Stent, A. (2016a). A low-rank approximation approach to learning joint embeddings of news stories and images for timeline summarization. In Proceedings of ACL (pp. 58–68).
Wang, Y., Huang, M., Zhu, X., & Zhao, L. (2016c). Attention-based LSTM for aspect-level sentiment classification. In Proceedings of EMNLP (pp. 606–615).
Whitehead, M., & Yaeger, L. (2010). Sentiment mining using ensemble classification models. In Innovations and advances in computer sciences and engineering (pp. 509–514). Berlin: Springer.
Whitelaw, C., Garg, N., & Argamon, S. (2005). Using appraisal groups for sentiment analysis. In Proceedings of CIKM (pp. 625–631).
Wiebe, J., Wilson, T., Bruce, R., Bell, M., & Martin, M. (2004). Learning subjective language. Computational Linguistics, 30(3), 277–308.
Wiebe, J. M., Bruce, R. F., & O’Hara, T. P. (1999). Development and use of a gold-standard data set for subjectivity classifications. In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics (pp. 246–253). College Park, MD: Association for Computational Linguistics.
Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of HLT-EMNLP (pp. 347–354).
Xia, R., & Ding, Z. (2019). Emotion-cause pair extraction: A new task to emotion analysis in texts. In Proceedings of ACL (pp. 1003–1012).
Xia, R., Hu, X., Lu, J., Yang, J., & Zong, C. (2013a). Instance selection and instance weighting for cross-domain sentiment classification via PU learning. In Proceedings of IJCAI (pp. 2176–2182).
Xia, R., Pan, Z., & Xu, F. (2018). Instance weighting for domain adaptation via trading off sample selection bias and variance. In Proceedings of IJCAI (pp. 4489–4495). Palo Alto, CA: AAAI Press.
Xia, R., Wang, C., Dai, X., & Li, T. (2015a). Co-training for semi-supervised sentiment classification based on dual-view bags-of-words representation. In Proceedings of ACL-IJCNLP (pp. 1054–1063).
Xia, R., Wang, T., Hu, X., Li, S., & Zong, C. (2013b). Dual training and dual prediction for polarity classification. In Proceedings of ACL (pp. 521–525).
Xia, R., Xu, F., Yu, J., Qi, Y., & Cambria, E. (2016). Polarity shift detection, elimination and ensemble: A three-stage model for document-level sentiment analysis. Information Processing & Management, 52(1), 36–45.
Xia, R., Xu, F., Zong, C., Li, Q., Qi, Y., & Li, T. (2015b). Dual sentiment analysis: Considering two sides of one review. IEEE Transactions on Knowledge and Data Engineering, 27(8), 2120–2133.
Xia, R., Yu, J., Xu, F., & Wang, S. (2014). Instance-based domain adaptation in NLP via in-target-domain logistic approximation. In Proceedings of AAAI (pp. 1600–1606).
Xia, R., Zhang, M., & Ding, Z. (2019). RTHN: A RNN-transformer hierarchical network for emotion cause extraction. In Proceedings of IJCAI (pp. 5285–5291). Palo Alto, CA: AAAI Press.
Xia, R., & Zong, C. (2011). A POS-based ensemble model for cross-domain sentiment classification. In Proceedings of IJCNLP (pp. 614–622).
Xia, R., Zong, C., & Li, S. (2011). Ensemble of feature sets and classification algorithms for sentiment classification. Information Sciences, 181(6), 1138–1152.
Xue, G.-R., Dai, W., Yang, Q., & Yu, Y. (2008). Topic-bridged PLSA for cross-domain text classification. In Proceedings of SIGIR (pp. 627–634).
Yu, J., & Jiang, J. (2016). Learning sentence embeddings with auxiliary tasks for cross-domain sentiment classification. In Proceedings of EMNLP (pp. 236–246).
Yu, J., Zha, Z.-J., Wang, M., & Chua, T.-S. (2011). Aspect ranking: Identifying important product aspects from online consumer reviews. In Proceedings of NAACL (pp. 1496–1505). Stroudsburg: Association for Computational Linguistics.
Zadrozny, B. (2004). Learning and evaluating classifiers under sample selection bias. In Proceedings of ICML (pp. 114–121).
Zhang, M., Zhang, Y., & Vo, D.-T. (2016b). Gated neural networks for targeted sentiment analysis. In Proceedings of AAAI (pp. 3087–3093).
Zhao, W. X., Jiang, J., Yan, H., & Li, X. (2010). Jointly modeling aspects and opinions with a MaxEnt-LDA hybrid. In Proceedings of EMNLP (pp. 56–65). Stroudsburg: Association for Computational Linguistics.
Zhuang, L., Jing, F., & Zhu, X.-Y. (2006). Movie review mining and summarization. In Proceedings of CIKM (pp. 43–50). New York, NY: Association for Computing Machinery.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2021 Tsinghua University Press
About this chapter
Cite this chapter
Zong, C., Xia, R., Zhang, J. (2021). Sentiment Analysis and Opinion Mining. In: Text Data Mining. Springer, Singapore. https://doi.org/10.1007/978-981-16-0100-2_8
Download citation
DOI: https://doi.org/10.1007/978-981-16-0100-2_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-0099-9
Online ISBN: 978-981-16-0100-2
eBook Packages: Computer ScienceComputer Science (R0)