Skip to main content

History and Perspectives of Ion-Transporting Rhodopsins

  • Chapter
  • First Online:
Optogenetics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1293))

Abstract

The first light-sensing proteins used in optogenetics were rhodopsins. The word “rhodopsin” originates from the Greek words “rhodo” and “opsis,” indicating rose and sight, respectively. Although the classical meaning of rhodopsin is the red-colored pigment in our eyes, the modern meaning of rhodopsin encompasses photoactive proteins containing a retinal chromophore in animals and microbes. Animal and microbial rhodopsins possess 11-cis and all-trans retinal, respectively, to capture light in seven transmembrane α-helices, and photoisomerizations into all-trans and 13-cis forms, respectively, initiate each function. We are able to find ion-transporting proteins in microbial rhodopsins, such as light-gated channels and light-driven pumps, which are the main tools in optogenetics. In this chapter, historical aspects and molecular properties of rhodopsins are introduced. In the first part, “what is rhodopsin?”, general introduction of rhodopsin is presented. Then, molecular mechanism of bacteriorodopsin, a light-driven proton pump and the best-studied microbial rhodopsin, is described. In the section of channelrhodopsin, the light-gated ion channel, molecular properties, and several variants are introduced. As the history has proven, understanding the molecular mechanism of microbial rhodopsins is a prerequisite for useful functional design of optogenetics tools in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACR:

Anion channel rhodopsin

Arch:

Archaerhodopsin 3

ASR:

Anabaena sensory rhodopsin

BR:

Bacteriorhodopsin

ChR:

Channelrhodopsin

CP:

Cytoplasmic

EC:

Extracellular

GPCR:

G-protein-coupled receptors

GtCCR4:

Cation channel rhodopsin from Guillardia theta

HeR:

Heliorhodopsin

HR:

Halorhodopsin

PoXeR:

Rhodopsin from Parvularcula oceani

Rh-GC:

Light-activated guanylyl cyclase rhodopsin

Rh-PDE:

Light-activated phosphodiesterase rhodopsin

RSB:

Retinal Schiff base

SRI:

Sensory rhodopsin I

SRII:

Sensory rhodopsin II

References

  • Avelar GM, Schumacher RI, Zaini PA, Leonard G, Richards TA, Gomes SL (2014) A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 24:1234–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bistable neural state switches. Nat Neurosci 12:229–234

    Article  CAS  PubMed  Google Scholar 

  • Berndt A, Schoenenberger P, Mattis J, Tye KM, Deisseroth K, Hegemann P, Oertner TG (2011) High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci U S A 108:7595–7600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berndt A, Lee SY, Ramakrishnan C, Deisseroth K (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Brown LS (2014) Eubacterial rhodopsins - Unique photosensors and diverse ion pumps. Biochim Biophys Acta 1837:553–561

    Article  CAS  PubMed  Google Scholar 

  • Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    Article  CAS  PubMed  Google Scholar 

  • Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O, Ramakrishnan C, Deisseroth K, Shenoy KV (2011) An optogenetic toolbox designed for primates. Nat Neurosci 14:387–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H (2014) Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 114:126–163

    Article  CAS  PubMed  Google Scholar 

  • Gerwert K, Freier E, Wolf S (2014) The role of protein-bound water molecules in microbial rhodopsins. Biochim Biophys Acta 1837:606–613

    Article  CAS  PubMed  Google Scholar 

  • Govorunova EG, Sineshchekov OA, Janz R, Liu X, Spudich JL (2015) Neuroscience. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349:647–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govorunova EG, Sineshchekov OA, Spudich JL (2016) Structurally distinct cation channelrhodopsins from cryptophyte algae. Biophys J 110:2302–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govorunova EG, Sineshchekov OA, Li H, Spudich JL (2017) Microbial rhodopsins: diversity, mechanisms, and optogenetic applications. Annu Rev Biochem 86:845–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gozem S, Luk HL, Schapiro I, Olivucci M (2017) Theory and simulation of the ultrafast double-bond isomerization of biological chromophores. Chem Rev 117:13502–13565

    Article  CAS  PubMed  Google Scholar 

  • Grimm C, Silapetere A, Vogt A, Bernal Sierra YA, Hegemann P (2018) Electrical properties, substrate specificity and optogenetic potential of the engineered light-driven sodium pump eKR2. Sci Rep 8:9316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grote M, Engelhard M, Hegemann P (2014) Of ion pumps, sensors and channels - perspectives on microbial rhodopsins between science and history. Biochim Biophys Acta 1837:533–545

    Article  CAS  PubMed  Google Scholar 

  • Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P (2010) Ultrafast optogenetic control. Nat Neurosci 13:387–392

    Article  CAS  PubMed  Google Scholar 

  • Hasemi T, Kikukawa T, Kamo N, Demura M (2016) Characterization of a cyanobacterial chloride-pumping rhodopsin and its conversion into a proton pump. J Biol Chem 291:355–362

    Article  CAS  PubMed  Google Scholar 

  • Hegemann P, Möglich A (2011) Channelrhodopsin engineering and exploration of new optogenetic tools. Nat Methods 8:39–42

    Article  CAS  PubMed  Google Scholar 

  • Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Article  CAS  PubMed  Google Scholar 

  • Hille B (1984) Ion channels and excitable membranes. Oxford University Press, Oxford

    Google Scholar 

  • Hofmann KP, Scheerer P, Hildebrand PW, Choe HW, Park JH, Heck M, Ernst OP (2009) A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem Sci 34:540–552

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, Kogure K, Kandori H (2013) A light-driven sodium ion pump in marine bacteria. Nat Commun 4:1678

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Kato Y, Kandori H (2015) Light-driven ion-translocating rhodopsins in marine bacteria. Trends Microbiol 23:91–98

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Nomura Y, Kandori H (2016a) Asymmetric functional conversion of eubacterial light-driven ion pumps. J Biol Chem 291(19):9883–9893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Ito S, Kato Y, Nomura Y, Shibata M, Uchihashi T, Tsunoda SP, Kandori H (2016b) A natural light-driven inward proton pump. Nat Commun 7:13415

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishizuka T, Kakuda M, Araki R, Yawo H (2006) Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54:85–94

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Kato HE, Taniguchi R, Iwata T, Nureki O, Kandori H (2014) Water-containing hydrogen-bonding network in the active center of channelrhodopsin. J Am Chem Soc 136:3475–3482

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Trivedi VD, Spudich JL (2003) Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47:1513–1522

    Article  CAS  PubMed  Google Scholar 

  • Kakegawa W, Katoh A, Narumi S, Miura E, Motohashi J, Takahashi A, Kohda K, Fukazawa Y, Yuzaki M, Matsuda S (2018) Optogenetic control of synaptic AMPA receptor endocytosis reveals roles of LTD in motor learning. Neuron 99:985–998

    Article  CAS  PubMed  Google Scholar 

  • Kandori H (2015) Ion-pumping microbial rhodopsins. Front Mol Sci 2:52

    Google Scholar 

  • Kandori H, Inoue K, Tsunoda SP (2018) Light-driven sodium-pumping rhodopsin: a new concept of active transport. Chem Rev 118:10646–10658

    Article  CAS  PubMed  Google Scholar 

  • Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, Deisseroth K, Nureki O (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato HE, Inoue K, Abe-Yoshizumi R, Kato Y, Ono H, Konno M, Hososhima S, Ishizuka T, Hoque MR, Kunitomo H, Ito J, Yoshizawa S, Yamashita K, Takemoto M, Nishizawa T, Taniguchi R, Kogure K, Maturana AD, Iino Y, Yawo H, Ishitani R, Kandori H, Nureki O (2015) Structural basis for Na+ transport mechanism by a light-driven Na+ pump. Nature 521:48–53

    Article  CAS  PubMed  Google Scholar 

  • Kato HE, Kim YS, Paggi JM, Evans KE, Allen WE, Richardson C, Inoue K, Ito S, Ramakrishnan C, Fenno LE, Yamashita K, Hilger D, Lee SY, Berndt A, Shen K, Kandori H, Dror RO, Kobilka BK, Deisseroth K (2018) Structural mechanisms of selectivity and gating in anion channelrhodopsins. Nature 561:349–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawanabe A, Furutani Y, Jung KH, Kandori H (2009) Engineering an inward proton transport from a bacterial sensor rhodopsin. J Am Chem Soc 131:16439–16444

    Article  CAS  PubMed  Google Scholar 

  • Khorana HG, Gerber GE, Herlihy WC, Gray CP, Anderegg RJ, Nihei K, Biemann K (1979) Amino acid sequence of bacteriorhodopsin. Proc Natl Acad Sci U S A 76:5046–5050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Kato HE, Yamashita K, Ito S, Inoue K, Ramakrishnan C, Fenno LE, Evans KE, Paggi JM, Dror RO, Kandori H, Kobilka BK, Deisseroth K (2018) Crystal structure of the natural anion-conducting channelrhodopsin GtACR1. Nature 561:343–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK, Boyden ES (2014) Indepeendent optical excitation of distinct neural populations. Nat Methods 11:338–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG, Bamann C, Bamberg E (2011) Ultra light-sensitive and fast neuronal activation with the Ca2+-permiable channelrhodopsin CatCh. Nat Neurosci 14:513–518

    Article  CAS  PubMed  Google Scholar 

  • Konno M, Kato Y, Kato HE, Inoue K, Nureki O, Kandori H (2016) Mutant of a light-driven sodium ion pump can transport cesium ions. J Phys Chem Lett 7:51–55

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Terakita A (2014) Diversity of animal opsin-based pigments and their optogenetic potential. Biochim Biophys Acta 1837:710–716

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Takada E, Nagata T, Tsukamoto H, Terakita A (2013) Homologs of vertebrate Opn3 potentially serve as a light sensor in nonphotoreceptive tissue. Proc Natl Acad Sci U S A 110:4998–5003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688

    Article  CAS  PubMed  Google Scholar 

  • Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16:1499–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lórenz-Fonfría VA, Heberle J (2014) Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel. Biochim Biophys Acta 1837:626–642

    Article  PubMed  CAS  Google Scholar 

  • Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. J Mol Biol 291:899–911

    Article  CAS  PubMed  Google Scholar 

  • Marshel JH, Kim YS, Machado TA, Quirin S, Benson B, Kadmon J, Raja C, Chibukhchyan A, Ramakrishnan C, Inoue M, Shane JC, McKnight DJ, Yoshizawa S, Kato HE, Ganguli S, Deisseroth K (2019) Cortical layer-specific critical dynamics triggering perception. Science 365:6453

    Article  CAS  Google Scholar 

  • Matsuno-Yagi A, Mukohata Y (1977) Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun 78:237–243

    Article  CAS  PubMed  Google Scholar 

  • Miesenbock G (2011) Optogenetic control of cells and circuits. Annu Rev Cell Dev Biol 27:731–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muroda K, Nakashima K, Shibata M, Demura M, Kandori H (2012) Protein-bound water as the determinant of asymmetric functional conversion between light-driven proton and chloride pumps. Biochemistry 51:4677–4684

    Article  CAS  PubMed  Google Scholar 

  • Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    Article  CAS  PubMed  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152

    Article  CAS  PubMed  Google Scholar 

  • Palczewski K (2012) Chemistry and biology of vision. J Biol Chem 287:1612–1619

    Article  CAS  PubMed  Google Scholar 

  • Pushkarev A, Inoue K, Larom S, Flores-Uribe J, Singh M, Konno M, Tomida S, Ito S, Nakamura R, Tsunoda SP, Philosof A, Sharon I, Yutin N, Koonin EV, Kandori H, Béjà O (2018) A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558:595–599

    Article  CAS  PubMed  Google Scholar 

  • Sasaki J, Brown LS, Chon YS, Kandori H, Maeda A, Needleman R, Lanyi J (1995) Conversion of bacteriorhodopsin into a chloride ion pump. Science 269:73–75

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Yamashita T, Yoshida K, Inoue K, Shichida Y, Kandori H (2014) Chimeric proton-pumping rhodopsins containing the cytoplasmic loop of bovine rhodopsin. PLoS One 9:e91323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneider F, Grimm C, Hegemann P (2015) Biophysics of Channelrhodopsin. Annu Rev Biophys 44:167–186

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko V, Mager T, Kovalev K, Polovinkin V, Alekseev A, Juettner J, Chizhov I, Bamann C, Vavourakis C, Ghai R, Gushchin I, Borshchevskiy V, Rogachev A, Melnikov I, Popov A, Balandin T, Rodriguez-Valera F, Manstein DJ, Bueldt G, Bamberg E, Gordeliy V (2017) Inward H+ pump xenorhodopsin: mechanism and alternative optogenetic approach. Sci Adv 3:e1603187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shichida Y, Matsuyama T (2009) Evolution of opsins and phototransduction. Philos Trans R Soc Lond Ser B Biol Sci 364:2881–2895

    Article  CAS  Google Scholar 

  • Shigemura S, Hososhima S, Kandori H, Tsunoda SP (2019) Ion channel properties of a cation channelrhodopsin, Gt_CCR4. Appl Sci 9:3440

    Article  CAS  Google Scholar 

  • Shihoya W, Inoue K, Singh M, Konno M, Hososhima S, Yamashita K, Ikeda K, Higuchi A, Izume T, Okazaki S, Hashimoto M, Mizutori R, Tomida S, Yamauchi Y, Abe-Yoshizumi R, Katayama K, Tsunoda SP, Shibata M, Furutani Y, Pushkarev A, Béjà O, Uchihashi T, Kandori H, Nureki O (2019) Crystal structure of heliorhodopsin. Nature 572:132–136

    Article  CAS  Google Scholar 

  • Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 99:8689–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spudich JL, Bogomolni RA (1984) Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature 312:509–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Yamasaki K, Fujita S, Oda K, Iseki M, Yoshida K, Watanabe M, Daiyasu H, Toh H, Asamizu E, Tabata S, Miura K, Fukuzawa H, Nakamura S, Takahashi T (2003) Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochem Biophys Res Commun 301:711–717

    Article  CAS  PubMed  Google Scholar 

  • Tanford C (1983) Mechanism of free energy coupling in active transport. Annu Rev Biochem 52:379–409

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda SP, Prigge M, Abe-Yoshizumi R, Inoue K, Kozaki Y, Ishizuka T, Yawo H, Yizhar O, Kandori H (2017) Functional characterization of sodium-pumping rhodopsins with different pumping properties. PLoS One 12:e0179232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volkov O, Kovalev K, Polovinkin V, Borshchevskiy V, Bamann C, Astashkin R, Marin E, Popov A, Balandin T, Willbold D, Büldt G, Bamberg E, Gordeliy V (2017) Structural insights into ion conduction by channelrhodopsin 2. Science 358:6366

    Article  CAS  Google Scholar 

  • Weidlich O, Schalt B, Friedman N, Sheves M, Lanyi JK, Brown LS, Siebert F (1996) Steric interaction between the 9-methyl group of the retinal and tryptophan 182 controls 13-cis to all-trans reisomerization and proton uptake in the bacteriorhodopsin photocycle. Biochemistry 35:10807–10814

    Article  CAS  PubMed  Google Scholar 

  • Wiegert JS, Mahn M, Prigge M, Printz Y, Yizhar O (2017) Silencing neurons: tools, applications, and experimental constraints. Neuron 95:504–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wietek J, Wiegert JS, Adeeishvili N, Schneider F, Watanabe H, Tsunoda SP, Vogt A, Elstner M, Oertner TG, Hegemann P (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344:409–412

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi Y, Konno M, Ito S, Tsunoda SP, Inoue K, Kandori H (2017) Molecular properties of a DTD channelrhodopsin from Guillardia theta. Biophys Physicobiol 14:57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye H, Daoud-El Baba M, Peng RW, Fussenegger M (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332:1565–1568

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Tsunoda SP, Brown LS, Kandori H (2017) A unique choanoflagellate enzyme rhodopsin exhibits light-dependent cyclic nucleotide phosphodiesterase activity. J Biol Chem 292:7531–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Prigge M, Beyrière F, Tsunoda SP, Mattis J, Yizhar O, Hegemann P, Deisseroth K (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11:631–633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, Prigge M, Berndt A, Cushman J, Polle J, Magnuson J, Hegemann P, Deisseroth K (2011) The microbial opsin family of optogenetic tools. Cell 147:1446–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Japanese Ministry of Education, Culture, Sports and Technology Grants 18H03986, 19H04959, and JST CREST Grant JPMJCR1753.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Kandori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kandori, H. (2021). History and Perspectives of Ion-Transporting Rhodopsins. In: Yawo, H., Kandori, H., Koizumi, A., Kageyama, R. (eds) Optogenetics. Advances in Experimental Medicine and Biology, vol 1293. Springer, Singapore. https://doi.org/10.1007/978-981-15-8763-4_1

Download citation

Publish with us

Policies and ethics