Skip to main content

Fuzzy Logic Simulation for Classifying Abrasive Wheels in Pendulum Grinding

  • Conference paper
  • First Online:
Research in Intelligent and Computing in Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1254))

  • 1152 Accesses

Abstract

Simulation results in the fuzzy logic environment can be used to classify abrasive wheels with linguistic estimates and solving local grinding problems: selection of based elements of the wheel characteristic, to minimize (maximize) a single surface topography parameter. Requirements integrated assessment of topography High-Speed Tool Steel W9Mo4Co8 in the greatest measure responses for an abrasive wheel: 25AF46K10V5-PO3, 5SG60K12VXP and 5NQ46I6VS3 with linguistic rate “good” and the greatest values of the desirability function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soler YI, Nguyen VC (2017) Study of micro-hardness of high-speed W9Mo4Co8 steel plates in pendulum grinding by abrasive wheel periphery. J Eng Technol Sci 49:291–307. https://doi.org/10.5614/j.eng.technol.sci.2017.49.3.1

    Article  Google Scholar 

  2. Webster J, Tricard M (2004) Innovation in abrasive products for precision grinding. CIRP Ann Manuf Technol 54(2):597–617. https://doi.org/10.1016/S0007-8506(07)60031-6

    Article  Google Scholar 

  3. Abrasives for industrial market. Carborundum. https://www.westtool.com/customer/wetosu/vendor/catalogs/carborundum/industrial_catalog_2014/index.html

  4. Abrasive Technological Excellence. Norton Saint-Gobain. https://pdfslide.net/documents/norton-catalogus.html

  5. State Standard GOST Р52381-2005 (2005) Abrasive materials. grain content and grain composition of grinding-powder. control of grain composition. Standartinform Publ., Moscow

    Google Scholar 

  6. State Standard GOST Р52587-2006 (2007) The abrasive tool. notation and methods for measuring hardness. Standartinform Publ, Moscow

    Google Scholar 

  7. Jayanti D, Barbara L (2016) Effect of manual grinding operations on surface integrity. Procedia CIRP 45:95–98. https://doi.org/10.1016/j.procir.2016.02.091

    Article  Google Scholar 

  8. Kang Y, Lee M, Lee Y, Gatton TM (2006) Optimization of fuzzy rules: integrated approach for classification problems. Comput Sci Its Appl—ICCSA 2006:665–674. https://doi.org/10.1007/11751649_73

    Article  MATH  Google Scholar 

  9. Zhang JF, Chen HJ, Fan L (2014) Fuzzy logic and classification of information sources. Appl Mech Mater 614:378–380. https://doi.org/10.402/www.scientific.net/AMM.614.378

    Google Scholar 

  10. Nguyen DM (2015) Complex investigation of the classification problem of using fuzzy models and distributed computations, PhD Dissertation, Irkutsk State Transport University, Irkutsk City

    Google Scholar 

  11. Omid M (2011) Design of an expert system for sorting pistachio nuts through decision tree and fuzzy logic classifier. Expert Syst Appl 38:4339–4347. https://doi.org/10.1016/j.eswa.2010.09.103

    Google Scholar 

  12. Mohammad RAAA, Ali MB, Hojat A, Saeid M, Babak B (2015) Fuzzy logic based classification of faults in mechanical differential. J Vibroeng 17:635–3649 https://www.jvejournals.com/article/14451/pdf

    Google Scholar 

  13. Bellman R, Kalaba R, Zadeh LA (1966) Abstraction and pattern classification. J Math Anal Appl 13:1–7. https://doi.org/10.1016/0022-247X(66)90071-0

    Article  MathSciNet  MATH  Google Scholar 

  14. Bezdek JC (1973) Fuzzy mathematics in pattern classification, Ph.D. Thesis. Ithaca: Cornell University, New York

    Google Scholar 

  15. Strackeljan J, Behr D, Kocher T (1997) Fuzzy pattern recognition for automatic detection of different teeth substances. Fuzzy Sets Syst 85:275–286. https://doi.org/10.1016/0165-0114(95)00352-5

    Article  Google Scholar 

  16. Bellacicco A (1976) Fuzzy classification. Synthese 33:273–281. https://doi.org/10.1007/BF00485447

    Article  MathSciNet  MATH  Google Scholar 

  17. Hirota К, Pedrycz W (1986) Subjective entropy or probabilistic sets and fuzzy cluster analysis. IEЕЕ Trans Syst Man Cybern 16:173–179. https://doi.org/10.1109/TSMC.1986.289297

    Article  MATH  Google Scholar 

  18. State Standard GOST Р52781-2007 (2007) Grinding wheels. technical conditions. Standartinform Publ, Moscow

    Google Scholar 

  19. State Standard GOST 25472-82 (1982) Surface roughness. terms and definitions. Standartinform Publ, Moscow

    Google Scholar 

  20. State Standard GOST 24642-81 (1984) Form tolerances and arrangement of surfaces. basic concepts and notations. Standartinform Publ, Moscow

    Google Scholar 

  21. Soler YI, Nguyen VC (2014) Prediction effectiveness of grinding with wheels of different porosity from traditional and new abrasives by criterion of the accuracy of the plates formation P9M4K8. Proc Irkutsk State Techn Univ 11(94):49–58

    Google Scholar 

  22. State Standard GOST 9450-76 (1993) Measurement of microhardness indentation of diamond tips. Standartinform Publ, Moscow

    Google Scholar 

  23. Hollanoler M, Wolfe DA, Chicken E (2013) Nonparametric statistical methods. Wiley, New York

    Google Scholar 

  24. Sachs L (1984) Applied statistics: a handbook of techniques. Springer, New York

    Book  Google Scholar 

  25. Wheeler DJ, Chambers DS (2010) Understanding statistical process control. SPC Press, Knoxville

    Google Scholar 

  26. Mandrov BI, Baklanov SD, Baklanov DD, Vlesko AS, Putivskyi AH, Sukhinina SD (2012) Application desirability function of Harrington for extrusion welding of sheets made of polyethylene of PEND brand. Polzunovsky almanac 1:62–64

    Google Scholar 

  27. Vyatchenin DА (2004) Fuzzy methods of automatic classification. UE Technoprint, Minsk (in Russian)

    Google Scholar 

  28. State Standard GOST 24643-81 (1981) Tolerances of the shape and arrangement of surfaces. Numeric values. Standartinform Publ, Moscow

    Google Scholar 

  29. Soler YI, Kazimirov DY, Nguyen VL (2015) Quantitative assessment of burns while flat grinding hardened parts made of steel 37Cr4 by abrasive wheels of different porosity. Obrab Met—Met Working Mat Sci 1(66):6–19. https://doi.org/10.17212/1994-6309-2015-1-6-19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Canh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, V.C., Hoang, V.C., Nguyen, V., Nguyen, N.H. (2021). Fuzzy Logic Simulation for Classifying Abrasive Wheels in Pendulum Grinding. In: Kumar, R., Quang, N.H., Kumar Solanki, V., Cardona, M., Pattnaik, P.K. (eds) Research in Intelligent and Computing in Engineering. Advances in Intelligent Systems and Computing, vol 1254. Springer, Singapore. https://doi.org/10.1007/978-981-15-7527-3_1

Download citation

Publish with us

Policies and ethics