Skip to main content

Formation and Decomposition of Natural Gas Hydrate

  • Chapter
  • First Online:
Natural Gas Hydrate Management in Deepwater Gas Well

Abstract

The mechanism and mathematical model on the formation and decomposition of Natural Gas Hydrate (NGH) are the basis for studying the theories and technologies for hydrate prevention and management. This chapter briefly introduces the structure and formation of NGH, then analyzes the mechanism of hydrate formation and decomposition in thermodynamics and kinetics, finally provides the calculation methods of hydrate formation and decomposition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dendy SE (2003) Fundamental principles and applications of natural gas hydrates. Nature 426(6964):353–363

    Google Scholar 

  2. Taylor CJ, Miller KT, Koh CA et al (2007) Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface. Chem Eng Sci 62(23):6524–6533

    Google Scholar 

  3. Sloan ED Jr, Koh CA (2007) Clathrate hydrates of natural gases. CRC Press, Boca Raton

    Google Scholar 

  4. van der Waals JH, Platteeuw JC (1958) Clathrate solutions. Adv Chem Phys 1–57

    Google Scholar 

  5. Liu P (2011) Study on prediction model of pipeline gas hydrate formation position. Xi’an Shiyou University

    Google Scholar 

  6. Ma Q, Chen G, Sun C (2008) Gas hydrate science and technology. Chemical Industry Press

    Google Scholar 

  7. Holder GD, Angert PF (1982) Simulation of gas production from a reservoir containing both gas hydrates and free natural gas. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers

    Google Scholar 

  8. Kirchner MT, Boese R, Billups WE et al (2004) Gas hydrate single-crystal structure analyses. J Am Chem Soc 126(30):9407–9412

    Google Scholar 

  9. Parrish WR, Prausnitz JM (1972) Dissociation pressures of gas hydrates formed by gas mixtures. Ind Eng Chem Process Des Dev 1(11):26–35

    Google Scholar 

  10. Ng HJ, Robinson DB (1985) Hydrate formation in systems containing methane, ethane, propane, carbon dioxide or hydrogen sulfide in the presence of methanol. Fluid Phase Equilib 21(1):145–155

    Google Scholar 

  11. Katz DL (2013) Prediction of conditions of hydrate formation in natural gases. Trans Aime 160(1):140–149

    Google Scholar 

  12. Guang JC, Tian MG (1996) Thermodynamic modeling of hydrate formation based on new concepts. Fluid Phase Equilib 122(1–2):43–65

    Google Scholar 

  13. Vysniauskas A, Bishnoi PR (1983) A kinetic study of methane hydrate formation. Chem Eng Sci 38(7):1061–1072

    Google Scholar 

  14. Englezos P, Kalogerakis N, Dholabhai PD et al (1987) Kinetics of formation of methane and ethane gas hydrates. Chem Eng Sci 42(11):2647–2658

    Google Scholar 

  15. Turner D, Boxall J, Yang S et al (2005) Development of a hydrate kinetic model and its incorporation into the OLGA2000® transient multiphase flow simulator. In: 5th international conference on gas hydrates, Trondheim, Norway 12–16

    Google Scholar 

  16. Uchida T, Ebinuma T, Kawabata J et al (1999) Microscopic observations of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide. J Cryst Growth 204(3):348–356

    Google Scholar 

  17. Mori YH (2001) Estimating the thickness of hydrate films from their lateral growth rates: application of a simplified heat transfer model. J Cryst Growth 223(1):206–212

    Google Scholar 

  18. Mochizuki T, Mori YH (2006) Clathrate-hydrate film growth along water/hydrate-former phase boundaries—numerical heat-transfer study. J Cryst Growth 290(2):642–652

    Google Scholar 

  19. Skovborg P, Rasmussen P (1994) A mass-transport limited model for the growth of methane and ethane gas hydrates. Chem Eng Sci 49(8):1131–1143

    Google Scholar 

  20. Yapa PD, Zheng L, Chen F (2001) A model for deepwater oil/gas blowouts. Mar Pollut Bull 43(7):234–241

    Google Scholar 

  21. Wang Z, Yu J, Zhang J et al (2018) Improved thermal model considering hydrate formation and deposition in gas-dominated systems with free water. Fuel 236:870–879

    Google Scholar 

  22. Wang ZY, Zhao Y, Sun BJ et al (2016) Heat transfer model for annular-mist flow and its application in hydrate formation risk analysis during deepwater gas-well testing. Chin J Hydrodyn 31(1):20–27

    Google Scholar 

  23. Wang Z, Yang Z, Zhang J et al (2018) Quantitatively assessing hydrate-blockage development during deepwater-gas-well testing. SPE Journal 23(4):1166–1183

    Google Scholar 

  24. Zhang J, Wang Z, Sun B et al (2019) An integrated prediction model of hydrate blockage formation in deep-water gas wells. Int J Heat Mass Transf 140:187–202

    Google Scholar 

  25. Pan L, Hanratty TJ (2002) Correlation of entrainment for annular-mist flow in horizontal pipes. Int J Multiph Flow 28(3):385–408

    MATH  Google Scholar 

  26. Andreussi P, Asali JC, Hanratty TJ (1985) Initiation of roll waves in gas-liquid flows. AIChE J 31(1):119–126

    Google Scholar 

  27. Lorenzo MD, Aman ZM, Kozielski K et al (2014) Underinhibited hydrate formation and transport investigated using a single-pass gas-dominant flowloop. Energy Fuels 28(11):7274–7284

    Google Scholar 

  28. Mantilla I, Kouba G, Viana F et al (2012) Experimental investigation of liquid entrainment in gas at high pressure. In: 8th North American conference on multiphase technology. BHR Group, pp 211–225

    Google Scholar 

  29. Aman ZM, di Lorenzo M, Kozielski K et al (2016) Hydrate formation and deposition in a gas-dominant flowloop: initial studies of the effect of velocity and subcooling. J Nat Gas Sci Eng 35:1490–1498

    Google Scholar 

  30. Wang Z, Zhao Y, Sun B et al (2016) Modeling of hydrate blockage in gas-dominated systems. Energy Fuels 30(6):4653–4666

    Google Scholar 

  31. Turner D, Boxall J, Yang S et al (2005) Development of a hydrate kinetic model and its incorporation into the OLGA2000® transient multiphase flow simulator. In: 5th International conference on gas hydrates, Trondheim, Norway, pp 12–16

    Google Scholar 

  32. Wang Z, Zhang J, Sun B et al (2017) A new hydrate deposition prediction model for gas-dominated systems with free water. Chem Eng Sci 163(Complete):145–154

    Google Scholar 

  33. Wang Z, Zhang J, Chen L et al (2017) Modeling of hydrate layer growth in horizontal gas-dominated pipelines with free water. J Nat Gas Sci Eng 50:364–373

    Google Scholar 

  34. Zhang J, Wang Z, Liu S et al (2019) Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety. Appl Energy 253:113521

    Google Scholar 

  35. Jacob M (1936) Heat transfer in evaporation and condensation II. Mech Eng 58:729–740

    Google Scholar 

  36. Majumdar A, Mezic I (1999) Instability of ultra-thin water films and the mechanism of drop formation on hydrophilic surfaces. J Heat Transf 121(4):964–971

    Google Scholar 

  37. Haraguchi T, Shimada R, Takeyama T (1989) Drop formation mechanism in dropwise condensation on the polyvinylidene chloride surface. (Proposing a film growth hypothesis). Nihon Kikai Gakkai Ronbunshu B Hen/Trans Jpn Soc Mech Eng Part B 55(519):3472–3478

    Google Scholar 

  38. Tammann G, Boehme W (1935) Die Zahl der Wassertröpfchen bei der Kondensation auf verschiedenen festen Stoffen. Ann Phys 414(1):77–80

    Google Scholar 

  39. Gorbunov B, Hamilton R (1996) Water nucleation on aerosol particles containing surface-active agents. J Aerosol Sci 27(Suppl 1):S385–S386

    Google Scholar 

  40. Bergh S (1998) Water nucleation on aerosol particles containing both organic and soluble inorganic substances. Atmos Res 47(2):271–283

    Google Scholar 

  41. Rao I, Koh CA, Sloan ED et al (2013) Gas hydrate deposition on a cold surface in water-saturated gas systems. Ind Eng Chem Res 52(18):6262–6269

    Google Scholar 

  42. Zerpa LE, Rao I, Aman ZM et al (2013) Multiphase flow modeling of gas hydrates with a simple hydrodynamic slug flow model. Chem Eng Sci 99(32):298–304

    Google Scholar 

  43. Rehder G, Kirby SH, Durham WB et al (2004) Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth. Geochim Cosmochim Acta 68(2):285–292

    Google Scholar 

  44. Ullerich JW, Selim MS, Sloan ED (1987) Theory and measurement of hydrate dissociation. AIChE J 33(5):747–752

    Google Scholar 

  45. Selim MS, Sloan ED (2010) Heat and mass transfer during dissociation of hydrates in porous media. AIChE J 35(6):1049–1052

    Google Scholar 

  46. Kamath VA, Holder GD, Angert PF (1984) Three phase interfacial heat transfer during the dissociation of propane hydrates. Chem Eng Sci 39(10):1435–1442

    Google Scholar 

  47. Kamath VA, Holder GD (1987) Dissociation heat transfer characteristics of methane hydrates. AIChE J 33(2):347–350

    Google Scholar 

  48. Kim HC, Bishnoi PR, Heidemann RA et al (1987) Kinetics of methane hydrate decomposition. Chem Eng Sci 42(7):1645–1653

    Google Scholar 

  49. Clarke M, Bishnoi PR (2000) Determination of the intrinsic rate of ethane gas hydrate decomposition. Chem Eng Sci 55(21):4869–4883

    Google Scholar 

  50. Clarke, MA, Bishnoi R (2001) Measuring and modeling the rate of decomposition of gas hydrates formed from mixtures of methane and ethane. Chem Eng Sci 56(16):4715–4724

    Google Scholar 

  51. Sun C, Huang Q, Chen G (2006) Study progress for thermodynamics and dynamics of gas hydrate formation. J Chem Eng 57(5):1031–1039

    Google Scholar 

  52. Sun C (2001) Dynamics for hydrate formation/decomposition and related studies. China University of Petroleum, Beijing

    Google Scholar 

  53. Makogon TY, Mehta AP, Sloan ED Jr (1996) Structure H and structure I hydrate equilibrium data for 2, 2-dimethylbutane with methane and xenon. J Chem Eng Data 41(2):315–318

    Google Scholar 

  54. Jamaluddin AK, Kalogerakis N, Bishnoi PR (1989) Modeling of decomposition of a synthetic core of methane gas hydrate by coupling intrinsic kinetics with heat transfer. Phys Chem 67:945–948

    Google Scholar 

  55. Handa YP (1988) A calorimetric study of naturally occurring gas hydrates. Ind Eng Chem Res 27(5):872–874

    Google Scholar 

  56. Takeya S, Shimada W, Kamata Y et al (2001) In situ X-ray diffraction measurements of the self-preservation effect of CH4 hydrate. J Phys Chem A 105(42):9756–9759

    Google Scholar 

  57. Takeya S, Ebinuma T, Uchida T et al (2002) Self-preservation effect and dissociation rates of CH4 hydrate. J Cryst Growth 237(1):379–382

    Google Scholar 

  58. Takeya S, Uchida T, Nagao J et al (2005) Particle size effect of hydrate for self-preservation. Chem Eng Sci 60(5):1383–1387

    Google Scholar 

  59. Yan L, Liu J (2002) Gas storage capacity of methane hydrate in activated carbon. Acta Petrolei Sin (Pet Process Sect) 18(2):1–5

    Google Scholar 

  60. Lin W (2005) Basic studies related to gas mixture separation with hydrate method. China University of Petroleum, Beijing

    Google Scholar 

  61. Sun X, Wang Z, Sun B et al (2018) Modeling of dynamic hydrate shell growth on bubble surface considering multiple factor interactions. Chem Eng J 331:221–233

    Google Scholar 

  62. Sun X, Sun B, Wang Z et al (2018) A hydrate shell growth model in bubble flow of water-dominated system considering intrinsic kinetics, mass and heat transfer mechanisms. Int J Heat Mass Transf 117:940–950

    Google Scholar 

  63. Sun X, Sun B, Wang Z et al (2017) A new model for hydrodynamics and mass transfer of hydrated bubble rising in deep water. Chem Eng Sci 173:168–178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Sun, B., Gao, Y. (2020). Formation and Decomposition of Natural Gas Hydrate. In: Natural Gas Hydrate Management in Deepwater Gas Well. Springer, Singapore. https://doi.org/10.1007/978-981-15-6418-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6418-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6417-8

  • Online ISBN: 978-981-15-6418-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics