Skip to main content

A Hybrid Medical Diagnosis Approach with Swarm Intelligence Supported Autoencoder Based Recurrent Neural Network System

  • Chapter
  • First Online:
Deep Learning for Medical Decision Support Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 909))

Abstract

Since its first appearance in both academic and scientific world, Artificial Intelligence has taken many steps, which caused to build up different sub-fields focused on different algorithmic solution approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Alpaydin, Introduction to Machine Learning (MIT Press, Cambridge, MA, 2009)

    MATH  Google Scholar 

  2. P. Harrington, Machine Learning in Action (Manning Publications Co., New York, US, 2012)

    Google Scholar 

  3. E. Bonabeau, D.D.R.D.F. Marco, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (No. 1) (Oxford University Press, Oxford, 1999)

    Book  MATH  Google Scholar 

  4. X.S. Yang, Z. Cui, R. Xiao, A.H. Gandomi, M. Karamanoglu (eds.), Swarm Intelligence and Bio-inspired Computation: Theory and Applications (Newnes, London, 2013)

    Google Scholar 

  5. G. Lakemeyer, B. Nebel (eds.), Exploring Artificial Intelligence in the New Millennium (Morgan Kaufmann, Los Altos, CA, 2003)

    Google Scholar 

  6. B. Thuraisingham, Data Mining: Technologies, Techniques, Tools, and Trends. (CRC Press, London, 2014)

    Google Scholar 

  7. M. Brady, L.A. Gerhardt, H.F. Davidson (eds.), Robotics and Artificial Intelligence, vol. 11 (Springer, New York, 2012)

    Google Scholar 

  8. A. Ghosal, Robotics: Fundamental Concepts and Analysis (Oxford University Press, Oxford, 2006)

    Google Scholar 

  9. A. Abraham, E. Corchado, J.M. Corchado, Hybrid learning machines. Neurocomputing 72(13–15), 2729–2730 (2009)

    Article  Google Scholar 

  10. S. Wermter, Hybrid Neural Systems (No. 1778) (Springer, New York, 2000)

    Book  MATH  Google Scholar 

  11. L.R. Medsker, Hybrid Intelligent Systems (Springer, New York, 2012)

    MATH  Google Scholar 

  12. C. Grosan, A. Abraham, Hybrid evolutionary algorithms: methodologies, architectures, and reviews, Hybrid Evolutionary Algorithms (Springer, Berlin, Heidelberg, 2007), pp. 1–17

    MATH  Google Scholar 

  13. S. Sahin, M.R. Tolun, R. Hassanpour, Hybrid expert systems: A survey of current approaches and applications. Expert Syst. Appl. 39(4), 4609–4617 (2012)

    Article  Google Scholar 

  14. F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, …, Y. Wang, Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol. 2(4), 230–243 (2017)

    Google Scholar 

  15. P.L. Miller (ed.), Selected Topics in Medical Artificial Intelligence (Springer, New York, 2012)

    Google Scholar 

  16. D.D. Luxton (ed.), Artificial Intelligence in Behavioral and Mental Health Care (Elsevier, Amsterdam, 2015)

    Google Scholar 

  17. P. Hamet, J. Tremblay, Artificial intelligence in medicine. Metabolism 69, S36–S40 (2017)

    Article  Google Scholar 

  18. P.J. Lisboa, A.F. Taktak, The use of artificial neural networks in decision support in cancer: A systematic review. Neural Networks 19(4), 408–415 (2006)

    Article  MATH  Google Scholar 

  19. M. Hengstler, E. Enkel, S. Duelli, Applied artificial intelligence and trust—the case of autonomous vehicles and medical assistance devices. Technol. Forecast. Soc. Chang. 105, 105–120 (2016)

    Article  Google Scholar 

  20. F. Amato, A. López, E.M. Peña-Méndez, P. Vaňhara, A. Hampl, J. Havel, Artificial neural networks in medical diagnosis. J. Appl. Biomed. 11(2), 47–58 (2013)

    Article  Google Scholar 

  21. Q.K. Al-Shayea, Artificial neural networks in medical diagnosis. Int. J. Comput. Sci. Issues 8(2), 150–154 (2011)

    Google Scholar 

  22. E.H. Shortliffe, M.J. Sepúlveda, Clinical decision support in the era of artificial intelligence. JAMA 320(21), 2199–2200 (2018)

    Article  Google Scholar 

  23. C.C. Bennett, T.W. Doub, Expert systems in mental health care: AI applications in decision-making and consultation, Artificial Intelligence in Behavioral and Mental Health Care (Academic Press, London, 2016), pp. 27–51

    Chapter  Google Scholar 

  24. C. Yao, Y. Qu, B. Jin, L. Guo, C. Li, W. Cui, L. Feng, A convolutional neural network model for online medical guidance. IEEE Access 4, 4094–4103 (2016)

    Article  Google Scholar 

  25. Y. Jing, Y. Bian, Z. Hu, L. Wang, X.Q.S. Xie, Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era. AAPS J 20(3), 58 (2018)

    Article  Google Scholar 

  26. A.C. Bovik, Handbook of Image and Video Processing. (Elsevier Academic Press, 2010)

    Google Scholar 

  27. T.K. Moon, W.C. Stirling, Mathematical Methods and Algorithms for Signal Processing (Vol. 1) (Prentice Hall, Upper Saddle River, NJ, 2000)

    Google Scholar 

  28. O. Erkaymaz, M. Ozer, M. Perc, Performance of small-world feedforward neural networks for the diagnosis of diabetes. Appl. Math. Comput. 311, 22–28 (2017)

    MathSciNet  MATH  Google Scholar 

  29. O. Erkaymaz, M. Ozer, Impact of small-world network topology on the conventional artificial neural network for the diagnosis of diabetes. Chaos, Solitons Fractals 83, 178–185 (2016)

    Article  MathSciNet  Google Scholar 

  30. O. Er, O. Cetin, M.S. Bascil, F. Temurtas, A Comparative study on Parkinson’s disease diagnosis using neural networks and artificial immune system. J. Med. Imaging Health Inf. 6(1), 264–268 (2016)

    Article  Google Scholar 

  31. N. Yalcin, G. Tezel, C. Karakuzu, Epilepsy diagnosis using artificial neural network learned by PSO. Turk. J. Electr. Eng. Comput. Sci. 23(2), 421–432 (2015)

    Article  Google Scholar 

  32. U. Kose, An Ant-Lion optimizer-trained artificial neural network system for chaotic electroencephalogram (EEG) Prediction. Appl. Sci. 8(9), 1613 (2018)

    Article  Google Scholar 

  33. J.A.M. Saucedo, J.D. Hemanth, U. Kose, Prediction of electroencephalogram time series with electro-search optimization algorithm trained adaptive neuro-fuzzy inference system. IEEE Access 7, 15832–15844 (2019)

    Article  Google Scholar 

  34. B. Procopet, V.M. Cristea, M.A. Robic, M. Grigorescu, P.S. Agachi, S. Metivier, … J.P. Vinel, “Serum tests, liver stiffness and artificial neural networks for diagnosing cirrhosis and portal hypertension. Dig. Liver Dis. 47(5), 411–416 (2015)

    Google Scholar 

  35. A. Badnjević, L. Gurbeta, M. Cifrek, D. Marjanovic, Classification of asthma using artificial neural network, in 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). (IEEE, 2016), pp. 387–390

    Google Scholar 

  36. E.O. Olaniyi, O.K. Oyedotun, K. Adnan, Heart diseases diagnosis using neural networks arbitration. Int. J. Intell. Syst. Appl. 7(12), 72 (2015)

    Google Scholar 

  37. P. Dande, P. Samant, Acquaintance to artificial Neural Networks and use of artificial intelligence as a diagnostic tool for tuberculosis: a review. Tuberculosis 108, 1–9 (2018)

    Article  Google Scholar 

  38. S.K. Pandey, R.R. Janghel, ECG arrhythmia classification using artificial neural networks, in Proceedings of 2nd International Conference on Communication, Computing and Networking. (Springer, Singapore, 2019), pp. 645–652

    Google Scholar 

  39. S.F. Cankaya, I.A. Cankaya, T. Yigit, A. Koyun, Diabetes diagnosis system based on support vector machines trained by vortex optimization algorithm, in Nature-Inspired Intelligent Techniques for Solving Biomedical Engineering Problems. (IGI Global, 2018), pp. 203–218

    Google Scholar 

  40. N. Zeng, H. Qiu, Z. Wang, W. Liu, H. Zhang, Y. Li, A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease. Neurocomputing 320, 195–202 (2018)

    Article  Google Scholar 

  41. T. Santhanam, M.S. Padmavathi, Application of K-means and genetic algorithms for dimension reduction by integrating SVM for diabetes diagnosis. Proc. Comput. Sci. 47, 76–83 (2015)

    Article  Google Scholar 

  42. A.D. Dolatabadi, S.E.Z. Khadem, B.M. Asl, Automated diagnosis of coronary artery disease (CAD) patients using optimized SVM. Comput. Methods Programs Biomed. 138, 117–126 (2017)

    Article  Google Scholar 

  43. A. Subasi, E. Alickovic, J. Kevric, Diagnosis of chronic kidney disease by using random forest, in CMBEBIH 2017. (Springer, Singapore, 2017), pp. 589–594

    Google Scholar 

  44. B. Dai, R.C. Chen, S.Z. Zhu, W.W. Zhang, Using random forest algorithm for breast cancer diagnosis, in 2018 International Symposium on Computer, Consumer and Control (IS3C). (IEEE, 2018), pp. 449–452

    Google Scholar 

  45. Z. Hu, J. Tang, Z. Wang, K. Zhang, L. Zhang, Q. Sun, Deep learning for image-based cancer detection and diagnosis—a survey. Pattern Recogn. 83, 134–149 (2018)

    Article  Google Scholar 

  46. X. Li, S. Zhang, Q. Zhang, X. Wei, Y. Pan, J. Zhao, …, F. Yang, Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncol. 20(2), 193–201 (2019)

    Google Scholar 

  47. I. Reda, A. Khalil, M. Elmogy, A. Abou El-Fetouh, A. Shalaby, M. Abou El-Ghar, …, A. El-Baz, Deep learning role in early diagnosis of prostate cancer. Technol. Cancer Res. Treat. 17, 1533034618775530 (2018)

    Google Scholar 

  48. O. Deperlioglu, Classification of phonocardiograms with convolutional neural networks. BRAIN. Broad Res. Artif. Intell. Neurosci. 9(2), 22–33 (2018)

    Google Scholar 

  49. J.R. Burt, N. Torosdagli, N. Khosravan, H. RaviPrakash, A. Mortazi, F. Tissavirasingham, …, U. Bagci, Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks. British J. Radiol. 91(1089), 20170545 (2018)

    Google Scholar 

  50. S. Azizi, F. Imani, B. Zhuang, A. Tahmasebi, J.T. Kwak, S. Xu, …, B. Wood, Ultrasound-based detection of prostate cancer using automatic feature selection with deep belief networks. in International Conference on Medical Image Computing and Computer-Assisted Intervention. (Springer, Cham, 2015), pp. 70–77

    Google Scholar 

  51. A.M. Abdel-Zaher, A.M. Eldeib, Breast cancer classification using deep belief networks. Expert Syst. Appl. 46, 139–144 (2016)

    Article  Google Scholar 

  52. M.A. Al-antari, M.A. Al-masni, S.U. Park, J. Park, M.K. Metwally, Y.M. Kadah, …, T.S. Kim, An automatic computer-aided diagnosis system for breast cancer in digital mammograms via deep belief network. J. Med. Biol. Eng. 38(3), 443–456 (2018)

    Google Scholar 

  53. S. Khan, N. Islam, Z. Jan, I.U. Din, J.J.C. Rodrigues, A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recogn. Lett. 125, 1–6 (2019)

    Article  Google Scholar 

  54. C.J. Wang, C.A. Hamm, B.S. Letzen, J.S. Duncan, A probabilistic approach for interpretable deep learning in liver cancer diagnosis, in Medical Imaging 2019: Computer-Aided Diagnosis (Vol. 10950). (International Society for Optics and Photonics, 2019), p. 109500U

    Google Scholar 

  55. A. Yala, C. Lehman, T. Schuster, T. Portnoi, R. Barzilay, A deep learning mammography-based model for improved breast cancer risk prediction. Radiology, 182716 (2019)

    Google Scholar 

  56. E.J. Ha, J.H. Baek, D.G. Na, Deep convolutional neural network models for the diagnosis of thyroid cancer. Lancet Oncol. 20(3), e130 (2019)

    Article  Google Scholar 

  57. A. Cheng, Y. Kim, E. M. Anas, A. Rahmim, E.M. Boctor, R. Seifabadi, B.J. Wood, Deep learning image reconstruction method for limited-angle ultrasound tomography in prostate cancer, in Medical Imaging 2019: Ultrasonic Imaging and Tomography, vol. 10955. (International Society for Optics and Photonics, 2019), p. 1095516

    Google Scholar 

  58. A. Kharrat, M. Néji, Classification of brain tumors using personalized deep belief networks on MRImages: PDBN-MRI, in 11th International Conference on Machine Vision (ICMV 2018), vol. 11041. (International Society for Optics and Photonics, 2019), p. 110412 M

    Google Scholar 

  59. N.A. Ali, A.R. Syafeeza, L.J. Geok, Y.C. Wong, N.A. Hamid, A.S. Jaafar, Design of automated computer-aided classification of brain tumor using deep learning, in Intelligent and Interactive Computing (Springer, Singapore, 2019), pp. 285–291

    Google Scholar 

  60. P. Thirumurugan, P. Shanthakumar, Brain tumor detection and diagnosis using ANFIS classifier. Int. J. Imaging Syst. Technol. 26(2), 157–162 (2016)

    Article  Google Scholar 

  61. S. Kumarganesh, M. Suganthi, An enhanced medical diagnosis sustainable system for brain tumor detection and segmentation using ANFIS classifier. Curr. Med. Imaging Rev. 14(2), 271–279 (2018)

    Article  Google Scholar 

  62. A. Yadollahpour, J. Nourozi, S.A. Mirbagheri, E. Simancas-Acevedo, F.R. Trejo-Macotela, Designing and implementing an ANFIS based medical decision support system to predict chronic kidney disease progression. Frontiers Physiol. 9 (2018)

    Google Scholar 

  63. A. Addeh, H. Demirel, P. Zarbakhsh, Early detection of breast cancer using optimized anfis and features selection, in 2017 9th International Conference on Computational Intelligence and Communication Networks (CICN). (IEEE, 2017), pp. 39–42

    Google Scholar 

  64. M. Kirisci, H. Yılmaz, M.U. Saka, An ANFIS perspective for the diagnosis of type II diabetes. Annals of Fuzzy Mathematics and Informatics. (In Press, afmi.or.kr, 2019)

    Google Scholar 

  65. W. Ahmad, A. Ahmad, A. Iqbal, M. Hamayun, A. Hussain, G. Rehman, …, L. Huang, Intelligent hepatitis diagnosis using adaptive neuro-fuzzy inference system and information gain method. Soft Comput. 1–8 (2018)

    Google Scholar 

  66. W. Ahmad, L. Huang, A. Ahmad, F. Shah, A. Iqbal, Thyroid diseases forecasting using a hybrid decision support system based on ANFIS, k-NN and information gain method. J. Appl. Environ. Biol. Sci. 7, 78–85 (2017)

    Google Scholar 

  67. T. Yigit, S. Celik, Intelligent disease diagnosis with vortex optimization algorithm based ANFIS. J. Multi. Dev. 3(1), 1–20 (2019)

    Google Scholar 

  68. S.S. Udoh, U.A. Umoh, M.E. Umoh, M.E. Udo, Diagnosis of prostate cancer using soft computing paradigms. Global J. Comput. Sci. Technol. 19(2), 19–26 (2019)

    Google Scholar 

  69. L. Sarangi, M.N. Mohanty, S. Patnaik, Design of ANFIS based e-health care system for cardio vascular disease detection, in International Conference on Intelligent and Interactive Systems and Applications. (Springer, Cham, 2016), pp. 445–453

    Google Scholar 

  70. M. Nilashi, H. Ahmadi, L. Shahmoradi, O. Ibrahim, E. Akbari, A predictive method for hepatitis disease diagnosis using ensembles of neuro-fuzzy technique. J. Inf. Pub. Health 12(1), 13–20 (2019)

    Article  Google Scholar 

  71. T.V. Padmavathy, M.N. Vimalkumar, D.S. Bhargava, Adaptive clustering based breast cancer detection with ANFIS classifier using mammographic images”. Clust. Comput. 1–10 (2018)

    Google Scholar 

  72. W. Rajab, S. Rajab, V. Sharma, Kernel FCM-based ANFIS approach to heart disease prediction, in Emerging Trends in Expert Applications and Security. (Springer, Singapore, 2019), pp. 643–650

    Google Scholar 

  73. E.K. Roy, S.K. Aditya, Prediction of acute myeloid leukemia subtypes based on artificial neural network and adaptive neuro-fuzzy inference system approaches, in Innovations in Electronics and Communication Engineering. (Springer, Singapore, 2019), pp. 427–439

    Google Scholar 

  74. M. Imran, S.A. Alsuhaibani, A neuro-fuzzy inference model for diabetic retinopathy classification, in Intelligent Data Analysis for Biomedical Applications. (Academic Press, London, 2019), pp. 147–172

    Google Scholar 

  75. S. Zainuddin, F. Nhita, U.N. Wisesty, Classification of gene expressions of lung cancer and colon tumor using adaptive-network-based fuzzy inference system (ANFIS) with ant colony optimization (ACO) as the feature selection, in Journal of Physics: Conference Series, vol. 1192, no. 1. (IOP Publishing, 2019), p. 012019

    Google Scholar 

  76. M.N. Fata, R. Arifudin, B. Prasetiyo, Optimization neuro fuzzy using genetic algorithm for diagnose typhoid fever. Sci. J. Inf. 6(1), 1–11 (2019)

    Google Scholar 

  77. B.S. Babu, A. Suneetha, G.C. Babu, Y.J.N. Kumar, G. Karuna, Medical disease prediction using grey wolf optimization and auto encoder based recurrent neural network. Period. Eng. and Nat. Sci. 6(1), 229–240 (2018)

    Google Scholar 

  78. W. Bao, J. Yue, Y. Rao, A deep learning framework for financial time series using stacked auto encoders and long-short term memory. PLoS ONE 12(7), e0180944 (2017)

    Article  Google Scholar 

  79. P. Baldi, Autoencoders, unsupervised learning, and deep architectures, in Proceedings of ICML Workshop on Unsupervised and Transfer Learning (2012), pp. 37–49

    Google Scholar 

  80. H.O.A. Ahmed, M.D. Wong, A.K. Nandi, Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features. Mech. Syst. Signal Process. 99, 459–477 (2018)

    Article  Google Scholar 

  81. C. Blum, D. Merkle, Swarm intelligence, in Swarm Intelligence in Optimization, ed. by C. Blum, D. Merkle (Springer, Boston, MA, 2008), pp. 43–85

    Chapter  Google Scholar 

  82. A.E. Hassanien, E. Emary, Swarm Intelligence: Principles, Advances, and Applications (CRC Press, London, 2018)

    Book  Google Scholar 

  83. X.S. Yang, Z. Cui, R. Xiao, A.H. Gandomi, M. Karamanoglu, (eds.), Swarm intelligence and bio-inspired computation: theory and applications, in Newnes, (2013)

    Google Scholar 

  84. R.C. Eberhart, Y. Shi, J. Kennedy, Swarm Intelligence (Elsevier, Amsterdam, 2001)

    Google Scholar 

  85. D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  86. D. Karaboga, B. Basturk, On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  87. D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2014)

    Article  Google Scholar 

  88. D. Karaboga, Artificial bee colony algorithm. Scholarpedia 5(3), 6915 (2010)

    Article  Google Scholar 

  89. U. Kose, A. Arslan, On the idea of a new artificial intelligence based optimization algorithm inspired from the nature of vortex. BRAIN. Broad Res. Artif. Intell. Neurosci. 5(1–4), 60–66 (2015)

    Google Scholar 

  90. U. Kose, Development of Artificial Intelligence Based Optimization Algorithms (In Turkish), Doctoral dissertation, Selçuk University, Institute of Natural Sciences, (Konya, Turkey, 2017)

    Google Scholar 

  91. U. Kose, A. Arslan, Forecasting chaotic time series via anfis supported by vortex optimization algorithm: Applications on electroencephalogram time series. Arab. J. Sci. Eng. 42(8), 3103–3114 (2017)

    Article  Google Scholar 

  92. X.S. Yang, S. Deb, Cuckoo search via Lévy flights, in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (IEEE, 2009), pp 210–214

    Google Scholar 

  93. P. Civicioglu, E. Besdok, A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif. Intell. Rev. 39(4), 315–346 (2013)

    Article  Google Scholar 

  94. Z. Cheng, R. Savit, Fractal and nonfractal behavior in Levy flights. J. Math. Phys. 28(3), 592–597 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  95. X. S. Yang, S. Deb, Engineering optimisation by cuckoo search. Int. J. Math. Modell. Numer. Optim. 1(4), 330–343 (2010)

    Google Scholar 

  96. X.S. Yang, S. Deb, Cuckoo search: recent advances and applications. Neural Comput. Appl. 24(1), 169–174 (2014)

    Article  Google Scholar 

  97. S. Mirjalili, The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Article  Google Scholar 

  98. S. Mirjalili, P. Jangir, S. Saremi, Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 46(1), 79–95 (2017)

    Article  Google Scholar 

  99. A.A. Heidari, H. Faris, S. Mirjalili, I. Aljarah, M. Mafarja, Ant Lion optimizer: theory, literature review, and application in multi-layer perceptron neural networks, in Nature-Inspired Optimizers. (Springer, Cham, 2020), pp. 23–46

    Google Scholar 

  100. A. Tabari, A. Ahmad, A new optimization method: electro-search algorithm. Comput. Chem. Eng. 103, 1–11 (2017)

    Article  Google Scholar 

  101. C. Blake, C. Merz, UCI repository of machine learning databases, Department of Information and Computer Science (University of California, Irvine, CA, USA, 1998). (Online). http://www.archive.ics.uci.edu/ml (2015)

  102. Y. Chauvin, D.E. Rumelhart, Backpropagation: Theory, Architectures, and Applications (Psychology Press, 2013)

    Google Scholar 

  103. R. Hecht-Nielsen, Theory of the backpropagation neural network, in Neural Networks for Perception. (Academic Press, London, 1992), pp. 65–93

    Google Scholar 

  104. J.S. Jang, Self-learning fuzzy controllers based on temporal backpropagation. IEEE Trans. Neural Networks 3(5), 714–723 (1992)

    Article  Google Scholar 

  105. J.S. Jang, ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  106. B. Scholkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press, Cambridge, MA, 2001)

    Google Scholar 

  107. N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  108. D.T. Larose, C.D. Larose, K-nearest neighbor algorithm, in Discovering Knowledge in Data: An Introduction to Data Mining (Wiley, New York, 2005), pp. 149–164

    MATH  Google Scholar 

  109. Z. Song, N. Roussopoulos, K-nearest neighbor search for moving query point, in International Symposium on Spatial and Temporal Databases. (Springer, Berlin, Heidelberg, 2001), pp. 79–96

    Google Scholar 

  110. J. Kennedy, Swarm intelligence, in Handbook of Nature-Inspired and Innovative Computing (Springer, Boston, MA, 2006), pp. 187–219

    Book  Google Scholar 

  111. G. Beni, J. Wang, Swarm intelligence in cellular robotic systems, Robots and Biological Systems: Towards a New Bionics? (Springer, Berlin, Heidelberg, 1993), pp. 703–712

    Chapter  Google Scholar 

  112. M.G. Hinchey, R. Sterritt, C. Rouff, Swarms and swarm intelligence. Computer 40(4), 111–113 (2007)

    Article  Google Scholar 

  113. A. Abraham, C. Grosan, V. Ramos (eds.), Swarm Intelligence in Data Mining, vol. 34 (Springer, Berlin, Heidelberg, 2007)

    Google Scholar 

  114. J.C. Bansal, P.K. Singh, N.R. Pal (eds.), Evolutionary and Swarm Intelligence Algorithms (Springer, Berlin, Heidelberg, 2019)

    Google Scholar 

  115. R.S. Parpinelli, G. Plichoski, R.S. Da Silva, P.H. Narloch, A review of techniques for online control of parameters in swarm intelligence and evolutionary computation algorithms. IJBIC 13(1), 1–20 (2019)

    Article  Google Scholar 

  116. X. Li, M. Clerc, Swarm intelligence, Handbook of Metaheuristics (Springer, Cham, 2019), pp. 353–384

    Chapter  Google Scholar 

  117. B. Inje, S. Kumar, A. Nayyar, Swarm intelligence and evolutionary algorithms in disease diagnosis—introductory Aspects, in Swarm Intelligence and Evolutionary Algorithms in Healthcare and Drug Development. (Chapman and Hall/CRC, 2019), pp. 1–18

    Google Scholar 

  118. J. Del Ser, E. Villar, E. Osaba, Swarm Intelligence-Recent Advances, New Perspectives and Applications. (InTechOpen, 2019)

    Google Scholar 

  119. G.R. Raidl, J. Puchinger, C. Blum, Metaheuristic hybrids, Handbook of Metaheuristics (Springer, Cham, 2019), pp. 385–417

    Chapter  Google Scholar 

  120. K. Kumar, J.P. Davim, Optimization Using Evolutionary Algorithms and Metaheuristics: Applications in Engineering (CRC Press, Boca Raton, FL, 2019)

    Book  MATH  Google Scholar 

  121. H. Tavakoli, B.D. Barkdoll, Sustainability-based optimization algorithm. Int. J. Environ. Sci. Technol. 17(3), 1537–1550 (2020)

    Article  Google Scholar 

  122. T. Dede, M. Grzywiński, R.V. Rao, Jaya: a new meta-heuristic algorithm for the optimization of braced dome structures, Advanced Engineering Optimization Through Intelligent Techniques (Springer, Singapore, 2020), pp. 13–20

    Chapter  Google Scholar 

  123. M. Mafarja, A.A. Heidari, H. Faris, S. Mirjalili, I. Aljarah, Dragonfly algorithm: theory, literature review, and application in feature selection, Nature-Inspired Optimizers (Springer, Cham, 2020), pp. 47–67

    Google Scholar 

  124. M.H. Sulaiman, Z. Mustaffa, M.M. Saari, H. Daniyal, Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103330 (2020)

    Article  Google Scholar 

  125. Y. Zhang, Z. Jin, Group teaching optimization algorithm: a novel metaheuristic method for solving global optimization problems. Expert Syst. Appl. 148, 113246 (2020)

    Article  Google Scholar 

  126. X. Zhong, D. Enke, Predicting the daily return direction of the stock market using hybrid machine learning algorithms. Fin. Innovation 5(1), 4 (2019)

    Google Scholar 

  127. S. Ardabili, A. Mosavi, A.R. Várkonyi-Kóczy, Advances in machine learning modeling reviewing hybrid and ensemble methods, in International Conference on Global Research and Education. (Springer, Cham, 2019), pp. 215–227

    Google Scholar 

  128. T. Ma, C. Antoniou, T. Toledo, Hybrid machine learning algorithm and statistical time series model for network-wide traffic forecast. Transp. Res. Part C Emerg. Technol. 111, 352–372 (2020)

    Article  Google Scholar 

  129. S.N. Kumar, A.L. Fred, H.A. Kumar, P.S. Varghese, S.A. Jacob, Segmentation of anomalies in abdomen CT images by convolution neural network and classification by fuzzy support vector machine, Hybrid Machine Intelligence for Medical Image Analysis (Springer, Singapore, 2020), pp. 157–196

    Chapter  Google Scholar 

  130. S. Bhattacharyya, D. Konar, J. Platos, C. Kar, K. Sharma (eds.), Hybrid Machine Intelligence for Medical Image Analysis (Springer, Singapore, 2020)

    Google Scholar 

  131. H.S. Shon, E. Batbaatar, K.O. Kim, E.J. Cha, K.A. Kim, Classification of kidney cancer data using cost-sensitive hybrid deep learning approach. Symmetry 12(1), 154 (2020)

    Article  Google Scholar 

  132. A. Shikalgar, S. Sonavane, Hybrid deep learning approach for classifying alzheimer disease based on multimodal data, Computing in Engineering and Technology (Springer, Singapore, 2020), pp. 511–520

    Chapter  Google Scholar 

  133. N.B. Khulenjani, M.S. Abadeh, A hybrid feature selection and deep learning algorithm for cancer disease classification. Int. J. Comput. Inf. Eng. 14(2), 55–59 (2020)

    Google Scholar 

  134. J. Lee, Y.K. Kim, A. Ha, S. Sun, Y.W. Kim, J.S. Kim, …, K.H. Park, Macular Ganglion cell-inner plexiform layer thickness prediction from Red-free fundus photography using. Hybrid deep learning model. Sci. Rep. 10(1), 1–10 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utku Kose .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kose, U., Deperlioglu, O., Alzubi, J., Patrut, B. (2021). A Hybrid Medical Diagnosis Approach with Swarm Intelligence Supported Autoencoder Based Recurrent Neural Network System. In: Deep Learning for Medical Decision Support Systems. Studies in Computational Intelligence, vol 909. Springer, Singapore. https://doi.org/10.1007/978-981-15-6325-6_7

Download citation

Publish with us

Policies and ethics