Skip to main content

A Practical Method for Early Diagnosis of Heart Diseases via Deep Neural Network

  • Chapter
  • First Online:
Deep Learning for Medical Decision Support Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 909))

  • 664 Accesses

Abstract

Nowadays, the majority of human deaths are from heart diseases. For this reason, many studies have been done to improve the early diagnosis of heart diseases and to reduce deaths. These studies are mostly aimed at developing computer-aided diagnostic systems using the developing technology. Some computer-aided systems are clinical decision support systems that are developed to more easily detect heart disease than heart sounds or related data

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Deperlioglu, The effects of different training algorithms on the classification of medical databases using artificial neural networks, in European Conference on Science, Art & Culture ECSAC (2018)

    Google Scholar 

  2. Ömer Deperlioğlu, Classification of segmented heart sounds with Artificial Neural Networks. Int. J. Appl. Math. Electr. Comput. 6(4), 39–44 (2018)

    Article  Google Scholar 

  3. S. Bhatia, P. Prakash, G.N. Pillai, SVM based decision support system for heart disease classification with integer-coded genetic algorithm to select critical features, in Proceedings of the World Congress on Engineering and Computer Science (2008)

    Google Scholar 

  4. L. Parthiban, R. Subramanian, Intelligent heart disease prediction system using CANFIS and genetic algorithm. Int. J. Biol. Biomed. Med. Sci. 3(3) (2008)

    Google Scholar 

  5. A. Ahmed, S.A. Hannan, Data mining techniques to find out heart diseases: an overview. Int. J. Innov. Technol. Explor. Eng. (IJITEE), 1(4) (2012). ISSN 2278-3075

    Google Scholar 

  6. C.S. Dangare, S. Apte Sulabha, Improved study of heart disease prediction system using data mining classification techniques, Int. J. Comput. Appl. 47(10), 44–48 (2012)

    Google Scholar 

  7. Resul Das, Ibrahim Turkoglu, Abdulkadir Sengur, Effective diagnosis of heart disease through neural networks ensembles. Expert Syst. Appl. 36(4), 7675–7680 (2009)

    Article  Google Scholar 

  8. C. Potes, S. Parvaneh, A. Rahman, B. Conroy, Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds. https://arxiv.org/pdf/1707.04642.pdf. 2017

  9. J. Rubin, R. Abreu, A. Ganguli, S. Nelaturi, I. Matei, K. Sricharan, recognizing abnormal heart sounds using deep learning. https://physionet.org/challenge/2016/papers/potes.pdf (2017)

  10. O. Deperlioglu, Classification of phonocardiograms by convolutional neural networks, BRAIN. Broad Res. Artif. Intell. Neurosci. 9(2) (2018)

    Google Scholar 

  11. O. Deperlioglu, Classification of phonocardiograms by convolutional neural networks, BRAIN. Broad Res. Artif. Intell. Neurosci. 10(1) (2019)

    Google Scholar 

  12. Cleveland heart disease data set. http://archive.ics.uci.edu/ml/datasets/Heart+Disease. Last Accessed 10 Jan 2019

  13. Robert Detrano et al., International application of a new probability algorithm for the diagnosis of coronary artery disease. Am. J. Cardiol. 64(5), 304–310 (1989)

    Article  Google Scholar 

  14. D. Aha, D. Kibler, Instance-based prediction of heart-disease presence with the Cleveland database. Univ. Calif. 3(1), 3–2 (1988)

    Google Scholar 

  15. John H. Gennari, Pat Langley, Doug Fisher, Models of incremental concept formation. Artif. Intell. 40(1-3), 11–61 (1989)

    Article  Google Scholar 

  16. G. Hinton, R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Andrew P. Valentine, Trampert Jeannot, Data space reduction, quality assessment and searching of seismograms: autoencoder networks for waveform data. Geophys. J. Int. 189(2), 1183–1202 (2012)

    Article  Google Scholar 

  18. Q.V. Le, A tutorial on deep learning part 2: autoencoders, convolutional neural networks and recurrent neural networks. Google Brain 1–20 (2015)

    Google Scholar 

  19. P.K. Anooj, Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules. J. King Saud Univ.-Comput. Inf. Sci. 24(1), 27–40 (2012)

    Google Scholar 

  20. N.A. Setiawan, P.A. Venkatachalam, A.F.M. Hani, Diagnosis of coronary artery disease using artificial intelligence based decision support system, in Proceedings of the International Conference on Man-Machine Systems (ICoMMS) (Batu Ferringhi, Penang. 2009)

    Google Scholar 

  21. Humar Kahramanli, Novruz Allahverdi, Design of a hybrid system for the diabetes and heart diseases. Expert Syst. Appl. 35(1-2), 82–89 (2008)

    Article  Google Scholar 

  22. I. Abdel-Motaleb, R. Akula, Artificial intelligence algorithm for heart disease diagnosis using phonocardiogram signals, in 2012 IEEE International Conference on Electro/Information Technology (IEEE, 2012), pp. 1–6

    Google Scholar 

  23. S. Ghumbre, C. Patil, A. Ghatol, Heart disease diagnosis using support vector machine, in International Conference on Computer Science and Information Technology (ICCSIT’) Pattaya (2011)

    Google Scholar 

  24. G. Manogaran, R. Varatharajan, M.K. Priyan, Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system. Multimedia Tools Appl. 77(4), 4379–4399 (2018)

    Article  Google Scholar 

  25. H. Yan, Y. Jiang, J. Zheng, C. Peng, Q. Li, A multilayer perceptron-based medical decision support system for heart disease diagnosis. Expert Syst. Appl. 30(2), 272–281 (2006)

    Article  Google Scholar 

  26. A. Adeli, M. Neshat, A fuzzy expert system for heart disease diagnosis, in Proceedings of International Multi Conference of Engineers and Computer Scientists, Hong Kong, vol. 1 (2010), pp. 28–30

    Google Scholar 

  27. J. Nahar, T. Imam, K.S. Tickle, Y.P.P. Chen, Computational intelligence for heart disease diagnosis: A medical knowledge driven approach. Expert Syst. Appl. 40(1), 96–104 (2013)

    Article  Google Scholar 

  28. O.Y. Atkov, S.G. Gorokhova, A.G. Sboev, E.V. Generozov, E.V. Muraseyeva, S.Y. Moroshkina, N.N. Cherniy, Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters. J. Cardiol. 59(2), 190–194 (2012)

    Article  Google Scholar 

  29. E.O. Olaniyi, O.K. Oyedotun, K. Adnan, Heart diseases diagnosis using neural networks arbitration. Int. J. Intell. Syst. Appl. 7(12), 72 (2015)

    Google Scholar 

  30. M.G. Feshki, O.S. Shijani, Improving the heart disease diagnosis by evolutionary algorithm of PSO and feed forward neural network, in 2016 Artificial Intelligence and Robotics (IRANOPEN) (IEEE 2016), pp. 48–53

    Google Scholar 

  31. S. Tuli, N. Basumatary, S.S. Gill, M. Kahani, R.C. Arya, G.S. Wander, R. Buyya, Healthfog: an ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated IoT and fog computing environments. Future Gener. Comput. Syst. 104, 187–200 (2020)

    Article  Google Scholar 

  32. K.K. Wong, G. Fortino, D. Abbott, Deep learning-based cardiovascular image diagnosis: a promising challenge. Future Gener. Comput. Syst. (2019)

    Google Scholar 

  33. R. Alizadehsani, M. Roshanzamir, M. Abdar, A. Beykikhoshk, A. Khosravi, M. Panahiazar, A. Koohestani, N. Sarrafzadegan, A database for using machine learning and data mining techniques for coronary artery disease diagnosis. Sci. Data 6(1), 1–13 (2019)

    Article  Google Scholar 

  34. N. Zhang, G. Yang, Z. Gao, C. Xu, Y. Zhang, R. Shi, J. Keegan, L. Xu, H. Zhang, Z. Fan, D. Firmin, Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI. Radiology 291(3), 606–617 (2019)

    Article  Google Scholar 

  35. G.A. Tadesse, T. Zhu, Y. Liu, Y. Zhou, J. Chen, M. Tian, D. Clifton, Cardiovascular disease diagnosis using cross-domain transfer learning, in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2019), pp. 4262–4265

    Google Scholar 

  36. A.Y. Hannun, P. Rajpurkar, M. Haghpanahi, G.H. Tison, C. Bourn, M.P. Turakhia, A.Y. Ng, Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25(1), 65 (2019)

    Article  Google Scholar 

  37. A. Junejo, Y. Shen, A.A. Laghari, X. Zhang, H. Luo, Molecular diagnostic and using deep learning techniques for predict functional recovery of patients treated of cardiovascular disease. IEEE Access 7, 120315–120325 (2019)

    Article  Google Scholar 

  38. A. Bhardwaj, A. Kundra, B. Gandhi, S. Kumar, A. Rehalia, M. Gupta, Prediction of heart attack using machine learning. IITM J. Manage. IT 10(1), 20–24 (2019)

    Google Scholar 

  39. B. Ballinger, B., Hsieh, J., Singh, A., Sohoni, N., Wang, J., Tison, G. H., … & Pletcher, M. J. (2018). DeepHeart: semi-supervised sequence learning for cardiovascular risk prediction. In Thirty-Second AAAI Conference on Artificial Intelligence

    Google Scholar 

  40. A. Kishore, A. Kumar, K. Singh, M. Punia, Y. Hambir, Heart attack prediction using deep learning. Heart 5(04) (2018)

    Google Scholar 

  41. S.B. Patil, Y.S. Kumaraswamy, Extraction of significant patterns from heart disease warehouses for heart attack prediction. IJCSNS 9(2), 228–235 (2009)

    Google Scholar 

  42. R. Chitra, V. Seenivasagam, Heart attack prediction system using fuzzy C means classifier. IOSR J. Comput. Eng. 14, 23–31 (2013)

    Google Scholar 

  43. C. Thirumalai, A. Duba, R. Reddy, Decision making system using machine learning and Pearson for heart attack. In 2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA), vol. 2 (IEEE, 2017), pp. 206–210

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utku Kose .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kose, U., Deperlioglu, O., Alzubi, J., Patrut, B. (2021). A Practical Method for Early Diagnosis of Heart Diseases via Deep Neural Network. In: Deep Learning for Medical Decision Support Systems. Studies in Computational Intelligence, vol 909. Springer, Singapore. https://doi.org/10.1007/978-981-15-6325-6_6

Download citation

Publish with us

Policies and ethics