Skip to main content

A Brief View on Medical Diagnosis Applications with Deep Learning

  • Chapter
  • First Online:
Deep Learning for Medical Decision Support Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 909))

Abstract

It is thought that deep learning will be more effective in the near future and will be used more in medical applications. Because it does not require too many input parameters and users do not need to have expert knowledge. In addition, it is not affected by the increases in the amount of calculation and data, and responds faster than traditional methods. Continuous improvement and development in the field of deep learning will also contribute to this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Bakator, D. Radosav, Deep learning and medical diagnosis: a review of literature. Multimodal Technol. Interact. 2(3), 47 (2018)

    Article  Google Scholar 

  2. R. Neelapu, G.L. Devi, K.S. Rao, Deep learning based conventional neural network architecture for medical image classification. Traitement du Signal 35(2), 169 (2018)

    Article  Google Scholar 

  3. O. Deperlioglu, Classification of phonocardiograms with convolutional neural networks. BRAIN. Broad Res. Artif. Intell. Neurosci. 9(2), 22–33 (2018)

    Google Scholar 

  4. O. Deperlioglu, Classification of segmented phonocardiograms by convolutional neural networks. BRAIN. Broad Res. Artif. Intell. Neurosci. 10(2), 5–13 (2019)

    Google Scholar 

  5. H. Fujita, D. Cimr, Computer aided detection for fibrillations and flutters using deep convolutional neural network. Inf. Sci. 486, 231–239 (2019)

    Article  Google Scholar 

  6. D.J. Hemanth, O. Deperlioglu, U. Kose, An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Comput. Appl. 1–15 (2020)

    Google Scholar 

  7. O. Deperlıoğlu, U. Kose, Diagnosis of diabetic retinopathy by using image processing and convolutional neural network, in 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (IEEE, 2018), pp. 1–5

    Google Scholar 

  8. L.C. Afonso, G.H. Rosa, C.R. Pereira, S.A. Weber, C. Hook, V.H.C. Albuquerque, J.P. Papa, A recurrence plot-based approach for Parkinson’s disease identification. Fut. Gener. Comput. Syst. 94, 282–292 (2019)

    Article  Google Scholar 

  9. M. Längkvist, J. Jendeberg, P. Thunberg, A. Loutfi, M. Lidén, Computer aided detection of ureteral stones in thin slice computed tomography volumes using Convolutional Neural Networks. Comput. Biol. Med. 97, 153–160 (2018)

    Article  Google Scholar 

  10. S. Iqbal, M.U. Ghani, T. Saba, A. Rehman, Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN). Microsc. Res. Tech. 81(4), 419–427 (2018)

    Article  Google Scholar 

  11. Z. Yan, Y. Zhan, Z. Peng, S. Liao, Y.. Shinagawa, S. Zhang, X.S. Zhou, Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition. IEEE Trans. Med. Imaging 35(5), 1332–1343 (2016)

    Google Scholar 

  12. Y. Bar, I. Diamant, L. Wolf, H. Greenspan, Deep learning with non-medical training used for chest pathology identification, in Medical Imaging 2015: Computer-Aided Diagnosis, vol. 9414 (International Society for Optics and Photonics, 2015), pp. 94140V, Mar 2015

    Google Scholar 

  13. S. Okamoto, T. Yokota, J.H. Lee, A. Takai, T. Kido, M. Matsuda, Detection of Hepatocellular Carcinoma in CT Images Using Deep Learning (2018)

    Google Scholar 

  14. J. Cho, K. Lee, E. Shin, G. Choy, & S. Do, Medical image deep learning with hospital PACS dataset (2015). arXiv preprint arXiv:1511.06348

  15. S. Min, B. Lee, S. Yoon, Deep learning in bioinformatics. Brief. Bioinform. 18(5), 851–869 (2017)

    Google Scholar 

  16. S. Tanwar, J. Jotheeswaran, Survey on deep learning for medical imaging. JASC J. Appl. Sci. Comput. 5(7), 1608–1620 (2018)

    Google Scholar 

  17. N.F. Güler, E.D. Übeyli, I. Güler, Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29(3), 506–514 (2005)

    Article  Google Scholar 

  18. E.D. Übeyli, Implementing automated diagnostic systems for breast cancer detection. Expert Syst. Appl. 33(4), 1054–1062 (2007)

    Article  Google Scholar 

  19. H. Al-Askar, N. Radi, Á. MacDermott, Recurrent neural networks in medical data analysis and classifications, in Applied Computing in Medicine and Health (Morgan Kaufmann, 2016), pp. 147–165

    Google Scholar 

  20. Y. Mu, M. Huang, C. Ye, Q. Wu, Diagnosis prediction via recurrent neural networks. Int. J. Mach. Learn. Comput. 8(2) (2018)

    Google Scholar 

  21. E. Choi, M.T. Bahadori, A. Schuetz, W.F. Stewart, J. Sun, Doctor ai: Predicting clinical events via recurrent neural networks, in Machine Learning for Healthcare Conference (2016, December), pp. 301–318

    Google Scholar 

  22. A.N. Jagannatha, H. Yu, Bidirectional RNN for medical event detection in electronic health records, in Proceedings of the Conference. Association for Computational Linguistics. North American Chapter. Meeting, vol. 2016. NIH Public Access (2016, June), p. 473

    Google Scholar 

  23. M. Seera, C.P. Lim, K.S. Tan, W.S. Liew, Classification of transcranial Doppler signals using individual and ensemble recurrent neural networks. Neurocomputing 249, 337–344 (2017)

    Article  Google Scholar 

  24. J. Szkoła, K. Pancerz, J. Warchoł, Recurrent neural networks in computer-based clinical decision support for laryngopathies: an experimental study. Comput. Intell. Neurosci. 2011, 7 (2011)

    Article  Google Scholar 

  25. O. Deperlioglu, Classification of segmented heart sounds with autoencoder neural networks, in VIII. International Multidisciplinary Congress of Eurasia (IMCOFE’2019). ISBN: 978–605-68882-6-7, pp. 122-128, 24–26 Apr 2019, Antalya

    Google Scholar 

  26. O. Deperlioğlu, The effects of different training algorithms on the classification of medical databases using artificial neural networks, in 2nd European Conference on Science, Art & Culture (ECSAC 2018), Antalya, Turkey between April 19 to 22, 2018. ISBN: 978-605-288-553-6, pp. 91–98

    Google Scholar 

  27. O. Deperlioglu, Hepatitis disease diagnosis with deep neural networks, in International 4th European Conference on Science, Art & Culture (ECSAC’2019). ISBN: 978-605-7809-73-5, pp. 467–473, 18 to 21 Apr 2019, Antalya

    Google Scholar 

  28. O. Deperlioglu, Using autoencoder deep neural networks for diagnosis of breast cancer, in International 4th European Conference on Science, Art & Culture (ECSAC’2019), ISBN: 978-605-7809-73-5, pp. 475-481, 18 to 21 Apr 2019, Antalya

    Google Scholar 

  29. D. Arifoglu, A. Bouchachia, Activity recognition and abnormal behaviour detection with recurrent neural networks. Procedia Comput. Sci. 110, 86–93 (2017)

    Article  Google Scholar 

  30. K. Mao, R. Tang, X. Wang, W. Zhang, H. Wu, Feature representation using deep autoencoder for lung nodule image classification. Complexity (2018)

    Google Scholar 

  31. M. Chen, X. Shi, Y. Zhang, D. Wu, M. Guizani, Deep features learning for medical image analysis with convolutional autoencoder neural network. IEEE Trans. Big Data (2017)

    Google Scholar 

  32. M.S. Ayhan, L. Kuehlewein, G. Aliyeva, W. Inhoffen, F. Ziemssen, P. Berens, Expert-validated estimation of diagnostic uncertainty for deep neural networks in diabetic retinopathy detection. medRxiv, 19002154 (2019)

    Google Scholar 

  33. C. Leibig, V. Allken, M.S. Ayhan et al., Leveraging uncertainty information from deep neural networks for disease detection. Sci. Rep. 7, 17816 (2017). https://doi.org/10.1038/s41598-017-17876-z

    Article  Google Scholar 

  34. Q. Li, B. Feng, L. Xie, P. Liang, H. Zhang, T. Wang, A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35(1), 109–118 (2015)

    Article  Google Scholar 

  35. K.H. Miaoa, J.H. Miaoa, Coronary Heart Disease Diagnosis using Deep Neural Networks. Int. J. Adv. Comput. Sci. Appl. 9(10), 1–8 (2018)

    Google Scholar 

  36. R.R. Agravat, & M.S. Raval, Deep learning for automated brain tumor segmentation in MRI Images, in Soft Computing Based Medical Image Analysis (pp. 183–201). Academic Press (2018)

    Google Scholar 

  37. D.C. Cireşan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Mitosis detection in breast cancer histology images with deep neural networks, in International Conference on Medical Image Computing and Computer-assisted Intervention (Springer, Berlin, 2013), Sept 2013, pp. 411–418

    Google Scholar 

  38. R. Shimizu, S. Yanagawa, Y. Monde, H. Yamagishi, M. Hamada, T. Shimizu, T. Kuroda, Deep learning application trial to lung cancer diagnosis for medical sensor systems, in 2016 International SoC Design Conference (ISOCC) (IEEE, 2016), Oct 2016, pp. 191–192

    Google Scholar 

  39. Z. Liang, G. Zhang, J.X. Huang, Q.V.Hu, Deep learning for healthcare decision making with EMRs, in 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE (2014, November), pp. 556–559

    Google Scholar 

  40. D.F. Wulsin, J.R. Gupta, R. Mani, J.A. Blanco, B. Litt, Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement. J. Neural Eng. 8(3), 036015 (2011)

    Article  Google Scholar 

  41. Z.V. Freudenburg, N.F. Ramsey, M. Wronkiewicz, W.D. Smart, R. Pless, E.C. Leuthardt, Real-time naive learning of neural correlates in ECoG electrophysiology. Int. J. Mach. Learn. Comput. 1(3), 269 (2011)

    Article  Google Scholar 

  42. A.H. Al-Fatlawi, M.H. Jabardi, S.H. Ling, Efficient diagnosis system for Parkinson’s disease using deep belief network, in 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE (2016, July), pp. 1324–1330

    Google Scholar 

  43. B. Taji, A.D. Chan, S. Shirmohammadi, Classifying measured electrocardiogram signal quality using deep belief networks, in 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE (2017, May), pp. 1–6

    Google Scholar 

  44. X. An, D. Kuang, X. Guo, Y. Zhao, L. He, A deep learning method for classification of EEG data based on motor imagery, in International Conference on Intelligent Computing. Springer, Cham (2014, August), pp. 203–210

    Google Scholar 

  45. W. Sun, B. Zheng, W. Qian, Computer aided lung cancer diagnosis with deep learning algorithms, in Medical imaging 2016: computer-aided diagnosis, vol. 9785 (International Society for Optics and Photonics, 2016, March), p. 97850Z

    Google Scholar 

  46. W. Sun, B. Zheng, W. Qian, Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Comput. Biol. Med. 89, 530–539 (2017)

    Article  Google Scholar 

  47. C. Yu, J. Liu, S. Nemati, Reinforcement learning in healthcare: a survey (2019). arXiv preprint arXiv:1908.08796

  48. M. Mahmud, M.S. Kaiser, A. Hussain, S. Vassanelli, Applications of deep learning and reinforcement learning to biological data. IEEE Transact. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  49. H. Asoh, M.S.S. Akaho, T. Kamishima, K. Hasida, E. Aramaki, T. Kohro, An application of inverse reinforcement learning to medical records of diabetes treatment, in ECMLPKDD2013 Workshop on Reinforcement Learning with Generalized Feedback (2013, September)

    Google Scholar 

  50. A. Raghu, Reinforcement learning for sepsis treatment: baselines and analysis, in ICML 2019 Workshop (2019)

    Google Scholar 

  51. N. Liu, Y. Liu, B. Logan, Z. Xu, J. Tang, Y. Wang, Learning the dynamic treatment regimes from medical registry data through deep Q-network. Sci. Rep. 9(1), 1495 (2019)

    Article  Google Scholar 

  52. Y. Ling, S.A. Hasan, V. Datla, A. Qadir, K. Lee, J. Liu, O. Farri, Learning to diagnose: assimilating clinical narratives using deep reinforcement learning, in Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 895–905) (2017, November)

    Google Scholar 

  53. H.C. Kao, K.F. Tang, E.Y. Chang, Context-aware symptom checking for disease diagnosis using hierarchical reinforcement learning, in Thirty-Second AAAI Conference on Artificial Intelligence (2018, April)

    Google Scholar 

  54. S.M.B. Netto, V.R.C. Leite, A.C. Silva, A.C. de Paiva,, A. de Almeida Neto, Application on reinforcement learning for diagnosis based on medical image. Reinforcement Learning, 379 (2008)

    Google Scholar 

  55. T. Dai, M. Dubois, K. Arulkumaran, J. Campbell, C. Bass, B. Billot, A.A. Bharath, et al., Deep reinforcement learning for subpixel neural tracking, in International Conference on Medical Imaging with Deep Learning (2019, May), pp. 130–150

    Google Scholar 

  56. G. Maicas, G. Carneiro, A.P. Bradley, J.C. Nascimento, I. Reid, Deep reinforcement learning for active breast lesion detection from DCE-MRI, in International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham (2017, September), pp. 665–673

    Google Scholar 

  57. S. Park, W. Hwang, K.H. Jung, Semi-supervised reinforced active learning for pulmonary nodule detection in chest X-rays, in Medical Imaging with Deep Learning, MIDL (2018)

    Google Scholar 

  58. Y. Cao, S. Steffey, J. He, D. Xiao, C. Tao, P. Chen, H. Müller, Medical image retrieval: a multimodal approach. Cancer Inf. 13, CIN-S14053 (2014)

    Google Scholar 

  59. J. Wu, T.R. Mazur, S. Ruan, C. Lian, N. Daniel, H. Lashmett, S. Mutic, A deep Boltzmann machine-driven level set method for heart motion tracking using cine MRI images. Med. Image Anal. 47, 68–80 (2018)

    Google Scholar 

  60. J.M. Tomczak, Application of classification restricted Boltzmann machine to medical domains. World Appl. Sci. J. 31, 69–75 (2014)

    Google Scholar 

  61. J.M. Tomczak, Application of Classification Restricted Boltzmann Machine with discriminative and sparse learning to medical domains. Institute of Computer Science Wroclaw University of Technology (2014)

    Google Scholar 

  62. Q. Zhang, Y. Xiao, W. Dai, J. Suo, C. Wang, J. Shi, H. Zheng, Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics 72, 150–157 (2016)

    Article  Google Scholar 

  63. A.A. Nahid, A. Mikaelian, Y. Kong, Histopathological breast-image classification with restricted Boltzmann machine along with backpropagation. Biomed. Res. 29(10), 2068–2077 (2018)

    Article  Google Scholar 

  64. T. Tran, T.D. Nguyen, D. Phung, S. Venkatesh, Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM). J. Biomed. Inform. 54, 96–105 (2015)

    Article  Google Scholar 

  65. K. Kannadasan, D.R. Edla, V. Kuppili, Type 2 diabetes data classification using stacked autoencoders in deep neural networks. Clin. Epidemiol. Global Health (2018). https://doi.org/10.1016/j.cegh.2018.12.004

    Article  Google Scholar 

  66. C. Zhang, W. Gao, J. Song, J. Jiang, An imbalanced data classification algorithm of improved autoencoder neural network, in 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI). IEEE (2016, February), pp. 95–99

    Google Scholar 

  67. V.J. Kadam, S.M. Jadhav, K. Vijayakumar, Breast cancer diagnosis using feature ensemble learning based on stacked sparse autoencoders and softmax regression. J. Med. Syst. 43(8), 263 (2019)

    Article  Google Scholar 

  68. N. Sadati, M.Z. Nezhad, R.B. Chinnam, D. Zhu, Representation learning with autoencoders for electronic health records: a comparative study (2019). arXiv preprint arXiv:1908.09174

  69. W. Jia, K. Muhammad, S.H. Wang, Y.D. Zhang, Five-category classification of pathological brain images based on deep stacked sparse autoencoder. Multimedia Tools Appl. 78(4), 4045–4064 (2019)

    Article  Google Scholar 

  70. H.C. Shin, M.R. Orton, D.J. Collins, S.J. Doran, M.O. Leach, Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1930–1943 (2012)

    Article  Google Scholar 

  71. S. Sharma, I. Umar, L. Ospina, D. Wong, H.R. Tizhoosh, Stacked autoencoders for medical image search, in International Symposium on Visual Computing. Springer, Cham (2016, December), pp. 45–54

    Google Scholar 

  72. H.G. Kim, G.J. Jang, H.J Choi, M. Kim, Y.W. Kim, J. Choi, Recurrent neural networks with missing information imputation for medical examination data prediction, in 2017 IEEE International Conference on Big Data and Smart Computing (BigComp). (IEEE, 2017, February), pp. 317–323

    Google Scholar 

  73. Z.C. Lipton, D.C. Kale, C. Elkan, R. Wetzel, Learning to diagnose with LSTM recurrent neural networks (2015). arXiv preprint arXiv:1511.03677

  74. E. Choi, A. Schuetz, W.F. Stewart, J. Sun, Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. 24(2), 361–370 (2016)

    Article  Google Scholar 

  75. S.A. Rahman, D.A. Adjeroh, Deep Learning using Convolutional LSTM estimates Biological Age from Physical Activity. Sci. Rep. 9(1), 1–15 (2019)

    Article  Google Scholar 

  76. Ordóñez, F., D. Roggen, Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    Google Scholar 

  77. Aditi, M.K. Nagda, E. Poovammal, Image classification using a hybrid LSTM-CNN deep neural network. Int. J. Eng. Adv. Technol. (IJEAT), 8(6), 1342–1348 (2019)

    Google Scholar 

  78. T.N. Sainath, O. Vinyals, A. Senior, H. Sak, Convolutional, long short-term memory, fully connected deep neural networks, in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2015, April), pp. 4580–4584

    Google Scholar 

  79. S.K. De, R. Biswas, A.R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst. 117(2), 209–213 (2001)

    Article  MATH  Google Scholar 

  80. F. Amato, A. López, E.M. Peña-Méndez, P. Vaňhara, A. Hampl, J. Havel, Artificial neural networks in medical diagnosis (2013)

    Google Scholar 

  81. K.P. Adlassnig, Fuzzy set theory in medical diagnosis. IEEE Trans. Syst. Man Cybernetics. 16(2), 260–265 (1986)

    Article  Google Scholar 

  82. I. Kononenko, Machine learning for medical diagnosis: history, state of the art and perspective. Artif. Intell. Med. 23(1), 89–109 (2001)

    Article  Google Scholar 

  83. I. Kononenko, Inductive and Bayesian learning in medical diagnosis. Appl. Artif. Intell. Int. J. 7(4), 317–337 (1993)

    Article  Google Scholar 

  84. J. Soni, U. Ansari, D. Sharma, S. Soni, Predictive data mining for medical diagnosis: an overview of heart disease prediction. Int. J. Comput. Appl. 17(8), 43–48 (2011)

    Google Scholar 

  85. S. Ghumbre, C. Patil, A. Ghatol, Heart disease diagnosis using support vector machine, in International Conference on Computer Science and Information Technology (ICCSIT’) Pattaya (2011)

    Google Scholar 

  86. N. Barakat, A.P. Bradley, M.N.H. Barakat, Intelligible support vector machines for diagnosis of diabetes mellitus. IEEE Trans. Inf Technol. Biomed. 14(4), 1114–1120 (2010)

    Article  Google Scholar 

  87. A.T. Azar, S.M. El-Metwally, Decision tree classifiers for automated medical diagnosis. Neural Comput. Appl. 23(7–8), 2387–2403 (2013)

    Article  Google Scholar 

  88. A. Yala, C. Lehman, T. Schuster, T. Portnoi, R. Barzilay, A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 292(1), 60–66 (2019)

    Article  Google Scholar 

  89. J.N. Kather, A.T. Pearson, N. Halama, D. Jäger, J. Krause, S.H. Loosen, H.I. Grabsch, et al., Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25(7), 1054–1056 (2019)

    Google Scholar 

  90. S.K. Lakshmanaprabu, S.N. Mohanty, K. Shankar, N. Arunkumar, G. Ramirez, Optimal deep learning model for classification of lung cancer on CT images. Fut. Gener. Comput. Syst. 92, 374–382 (2019)

    Article  Google Scholar 

  91. S. Khan, N. Islam, Z. Jan, I.U. Din, J.J.C. Rodrigues, A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recogn. Lett. 125, 1–6 (2019)

    Article  Google Scholar 

  92. K. Nagpal, D. Foote, Y. Liu, P.H.C. Chen, E. Wulczyn, F. Tan, G.S. Corrado, et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Dig. Med. 2(1), 1–10 (2019)

    Google Scholar 

  93. R. Yan, F. Ren, X. Rao, B. Shi, T. Xiang, L. Zhang, F. Zhang, et al., Integration of multimodal data for breast cancer classification using a hybrid deep learning method, in International Conference on Intelligent Computing. (Springer, Cham, 2019, August), pp. 460–469

    Google Scholar 

  94. K. Gjertsson, K. Johnsson, J. Richter, K. Sjöstrand, L. Edenbrandt, A. Anand, A novel automated deep learning algorithm for segmentation of the skeleton in low-dose CT for [(18) F] DCFPyL PET/CT hybrid imaging in patients with metastatic prostate cancer (2019)

    Google Scholar 

  95. H. Polat, H. Danaei Mehr, Classification of pulmonary CT images by using hybrid 3D-deep convolutional neural network architecture. Appl. Sci. 9(5), 940 (2019)

    Article  Google Scholar 

  96. L.J. Vaickus, A.A. Suriawinata, J.W. Wei, X. Liu, Automating the Paris System for urine cytopathology—a hybrid deep-learning and morphometric approach. Cancer Cytopathol. 127(2), 98–115 (2019)

    Article  Google Scholar 

  97. J. Van, C. Yoon, J. Glavis-Bloom, M. Bardis, A. Ushinsky, D.S. Chow, D. Fujimoto, et al., Deep learning hybrid 3D/2D convolutional neural network for prostate MRI recognition (2019)

    Google Scholar 

  98. S. Seth, B. Agarwal, A hybrid deep learning model for detecting diabetic retinopathy. J. Stat. Manag. Syst. 21(4), 569–574 (2018)

    Google Scholar 

  99. G. Amit, O. Hadad, S. Alpert, T. Tlusty, Y. Gur, R. Ben-Ari, S. Hashoul, Hybrid mass detection in breast MRI combining unsupervised saliency analysis and deep learning, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, Cham, 2017), pp. 594–602

    Google Scholar 

  100. D. Maji, A. Santara, S. Ghosh, D. Sheet, P. Mitra, Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images, in 2015 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). (IEEE, 2015), pp. 3029–3032

    Google Scholar 

  101. E. Topol, Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again (Hachette UK, 2019)

    Google Scholar 

  102. S. Dash, B.R. Acharya, M. Mittal, A. Abraham, A. Kelemen, Deep Learning Techniques for Biomedical and Health Informatics (Springer, 2020)

    Google Scholar 

  103. A.Panesar, Machine Learning and AI for Healthcare (Apress, 2019)

    Google Scholar 

  104. M. Chang, Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare (Chapman and Hall/CRC, 2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utku Kose .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kose, U., Deperlioglu, O., Alzubi, J., Patrut, B. (2021). A Brief View on Medical Diagnosis Applications with Deep Learning. In: Deep Learning for Medical Decision Support Systems. Studies in Computational Intelligence, vol 909. Springer, Singapore. https://doi.org/10.1007/978-981-15-6325-6_3

Download citation

Publish with us

Policies and ethics