Skip to main content

An AHP-TOPSIS Based Framework for the Selection of Node Ranking Techniques in Complex Networks

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1241))

Abstract

Disparate natural and artificial systems are modelled as complex networks to understand their structural properties and dynamics of phenomena occurring on them. Identification of key components (nodes) of a complex network and ranking them has both theoretical and practical applications. The node ranking techniques are compared on three categories of criteria, namely, Differentiation, Accuracy and Computational Efficiency. Having multiple criteria for technique selection and a number of alternative ranking techniques available renders ranking technique selection in the domain of complex networks as Multi-Criteria Decision Making (MCDM) problem. A number of MCDM methods are accessible in the literature, but no treatment is available for the selection of node ranking techniques based on systematic decision making. In this paper, Analytic Hierarchy Process (AHP), followed by Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), are used in tandem to propose a framework that objectively compares and select node ranking techniques for complex networks. The working of the proposed framework is demonstrated with a dataset of complex networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Modern Phys. 74(1), 47 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bae, J., Kim, S.: Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Phys. A: Stat. Mech. Appl. 395, 549–559 (2014)

    Article  MathSciNet  Google Scholar 

  3. Behzadian, M., Otaghsara, S.K., Yazdani, M., Ignatius, J.: A state-of the-art survey of topsis applications. Expert Syst. Appl. 39(17), 13051–13069 (2012)

    Article  Google Scholar 

  4. Borgatti, S.P.: Identifying sets of key players in a social network. Comput. Math. Organ. Theory 12(1), 21–34 (2006)

    Article  Google Scholar 

  5. Chen, D., Lü, L., Shang, M.S., Zhang, Y.C., Zhou, T.: Identifying influential nodes in complex networks. Phys. A: Stat. Mech. Appl. 391(4), 1777–1787 (2012)

    Article  Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT press, Cambridge (2009)

    MATH  Google Scholar 

  7. Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, New York (2005). https://doi.org/10.1007/b100605

    Book  MATH  Google Scholar 

  8. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  9. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)

    Article  Google Scholar 

  10. Hwang, C.L., Lai, Y.J., Liu, T.Y.: A new approach for multiple objective decision making. Comput. Oper. Res. 20(8), 889–899 (1993)

    Article  Google Scholar 

  11. Hwang, C.L., Yoon, K.: Methods for multiple attribute decision making. In: Multiple attribute decision making, pp. 58–191. Springer, Heidelberg (1981)

    Google Scholar 

  12. Kendall, M.G.: The treatment of ties in ranking problems. Biometrika 33(3), 239–251 (1945)

    Article  MathSciNet  Google Scholar 

  13. Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  14. Kunegis, J.: Konect: the koblenz network collection. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1343–1350. ACM (2013)

    Google Scholar 

  15. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014

  16. Li, C., Wang, L., Sun, S., Xia, C.: Identification of influential spreaders based on classified neighbors in real-world complex networks. Appl. Math. Comput. 320, 512–523 (2018)

    Article  MathSciNet  Google Scholar 

  17. Liu, Y., Wei, B., Du, Y., Xiao, F., Deng, Y.: Identifying influential spreaders by weight degree centrality in complex networks. Chaos, Solitons Fractals 86, 1–7 (2016)

    Article  MathSciNet  Google Scholar 

  18. Liu, Y., Tang, M., Zhou, T., Do, Y.: Identify influential spreaders in complex networks, the role of neighborhood. Phys. A: Stat. Mech. Appl. 452, 289–298 (2016)

    Article  Google Scholar 

  19. Lü, L., Zhou, T., Zhang, Q.M., Stanley, H.E.: The h-index of a network node and its relation to degree and coreness. Nature Commun. 7, 10168 (2016)

    Article  Google Scholar 

  20. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63(6), 066117 (2001)

    Article  Google Scholar 

  21. Saaty, T.L., Decision, H.T.M.A.: The analytic hierarchy process. Euro. J. Oper. Res. 48, 9–26 (1990)

    Article  Google Scholar 

  22. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)

    Article  MathSciNet  Google Scholar 

  23. Salavati, C., Abdollahpouri, A., Manbari, Z.: Bridgerank: A novel fast centrality measure based on local structure of the network. Statistical Mechanics and its Applications, Physica A (2017)

    Google Scholar 

  24. Schmidt, F.K.: Analytische zahlentheorie in körpern der charakteristikp. Mathematische Zeitschrift 33(1), 1–32 (1931)

    Article  MathSciNet  Google Scholar 

  25. Wang, Z., Zhao, Y., Xi, J., Du, C.: Fast ranking influential nodes in complex networks using a k-shell iteration factor. Phys. A: Stat. Mech. Appl. 461, 171–181 (2016)

    Article  Google Scholar 

  26. Webber, W., Moffat, A., Zobel, J.: A similarity measure for indefinite rankings. ACM Trans. Inf. Syst. (TOIS) 28(4), 20 (2010)

    Article  Google Scholar 

  27. Zareie, A., Sheikhahmadi, A.: A hierarchical approach for influential node ranking in complex social networks. Expert Syst. Appl. 93, 200–211 (2018)

    Article  Google Scholar 

  28. Zavadskas, E.K., Turskis, Z., Kildiene, S.: State of art surveys of overviews on mcdm/madm methods. Technol. Econ. Dev. Econ. 20(1), 165–179 (2014)

    Article  Google Scholar 

  29. Zeng, A., Zhang, C.J.: Ranking spreaders by decomposing complex networks. Phys. Lett. A 377(14), 1031–1035 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kushal Kanwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kanwar, K., Kaushal, S., Kumar, H. (2020). An AHP-TOPSIS Based Framework for the Selection of Node Ranking Techniques in Complex Networks. In: Bhattacharjee, A., Borgohain, S., Soni, B., Verma, G., Gao, XZ. (eds) Machine Learning, Image Processing, Network Security and Data Sciences. MIND 2020. Communications in Computer and Information Science, vol 1241. Springer, Singapore. https://doi.org/10.1007/978-981-15-6318-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6318-8_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6317-1

  • Online ISBN: 978-981-15-6318-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics