Skip to main content

Estimating the Number of Components

  • Chapter
  • First Online:
Statistical Signal Processing
  • 735 Accesses

Abstract

In this chapter, we have discussed different methods of estimating the number of components in a multiple sinusoidal model. This problem can be formulated as a model selection problem, hence any model selection procedure which is available in the literature can be used for this purpose. We have provided three different approaches namely (i) likelihood ratio method, (ii) cross validation method and (iii) information theoretic criteria, and their theoretical properties have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, H.-Z., Chen, Z.-G., & Hannan, E. J. (1983). The maximum of the periodogram. Journal of Multivariate Analysis, 13, 383–400.

    Article  MathSciNet  Google Scholar 

  2. Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics, 21, 243–247.

    Article  MathSciNet  Google Scholar 

  3. Akaike, H. (1970). Statistical predictor identification. Annals of the Institute of Statistical Mathematics, 22, 203–217.

    Article  MathSciNet  Google Scholar 

  4. Bai, Z. D., Krishnaiah, P. R., & Zhao, L. C. (1986). On the detection of the number of signals in the presence of white noise. Journal of Multivariate Analysis, 20, 1–25.

    Article  MathSciNet  Google Scholar 

  5. Fisher, R. A. (1929). Tests of significance in harmonic analysis. Proceedings of the Royal Society of London Series A, 125, 54–59.

    MATH  Google Scholar 

  6. Kavalieris, L., & Hannan, E. J. (1994). Determining the number of terms in a trigonometric regression. Journal of Time Series Analysis, 15, 613–625.

    Article  MathSciNet  Google Scholar 

  7. Kaveh, M., Wang, H., & Hung, H. (1987). On the theoretical performance of a class of estimators of the number of narrow band sources. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35, 1350–1352.

    Article  Google Scholar 

  8. Kundu, D. (1992). Detecting the number of signals for undamped exponential models using information theoretic criteria. Journal of Statistical Computation and Simulation, 44, 117–131.

    Article  Google Scholar 

  9. Kundu, D. (1997). Estimating the number of sinusoids in additive white noise. Signal Processing, 56, 103–110.

    Article  Google Scholar 

  10. Kundu, D. (1998). Estimating the number of sinusoids and its performance analysis. Journal of Statistical Computation and Simulation, 60, 347–362.

    Article  MathSciNet  Google Scholar 

  11. Kundu, D., & Kundu, R. (1995). Consistent estimates of super imposed exponential signals when observations are missing. Journal of Statistical Planning and Inference, 44, 205–218.

    Article  MathSciNet  Google Scholar 

  12. Kundu, D., & Mitra, A. (1995). Consistent method of estimating the superimposed exponential signals. Scandinavian Journal of Statistics, 22, 73–82.

    MathSciNet  MATH  Google Scholar 

  13. Quinn, B. G. (1986). Testing for the presence of sinusoidal components. Journal of Applied Probability, Special Volume, 23 A, 201–210.

    Google Scholar 

  14. Quinn, B. G. (1989). Estimating the number of terms in a sinusoidal regression. Journal of Time Series Analysis, 10, 71–75.

    Article  MathSciNet  Google Scholar 

  15. Quinn, B. G., & Hannan, E. J. (2001). The estimation and tracking of frequency. New York: Cambridge University Press.

    Book  Google Scholar 

  16. Rao, C. R. (1988). Some results in signal detection. In S. S. Gupta & J. O. Berger (Eds.), Decision theory and related topics, IV, 2 (pp. 319–332). New York: Springer.

    Chapter  Google Scholar 

  17. Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465–471.

    Article  Google Scholar 

  18. Sakai, H. (1990). An application of a BIC-type method to harmonic analysis and a new criterion for order determination of an error process. IEEE Transactions of Acoustics, Speech and Signal Processing, 38, 999–1004.

    Google Scholar 

  19. Schwartz, S. C. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

    Article  MathSciNet  Google Scholar 

  20. Wang, X. (1993). An AIC type estimator for the number of cosinusoids. Journal of Time Series Analysis, 14, 433–440.

    Article  MathSciNet  Google Scholar 

  21. Wilkinson, W. H. (1965). The algebraic eigenvalue problem. Oxford: Clarendon Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swagata Nandi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nandi, S., Kundu, D. (2020). Estimating the Number of Components. In: Statistical Signal Processing. Springer, Singapore. https://doi.org/10.1007/978-981-15-6280-8_5

Download citation

Publish with us

Policies and ethics