Skip to main content

Multi-scale Convolutional Neural Network for Remote Sensing Image Change Detection

  • Conference paper
  • First Online:
Geoinformatics in Sustainable Ecosystem and Society (GSES 2019, GeoAI 2019)

Abstract

Intelligence method to detect changes in remote sensing images is a difficult but important issue and it is of great significance for natural resources, environmental and social-economy monitoring. In this paper, we presented a novel deep learning model named PSPNet-CONC which combined multi-scale feature deep learning model PSPNet and features extraction module ResNet34 in multi-period remote sensing images. Experiments were designed and conducted systematically for the comparison between the deep learning methods and traditional methods. Our experimental accuracy results show that our model got at least 11% higher in recall index than other state-of-the-art methods. Further more PA also increase by 4.5%, and unchanged accuracy is 1% better than other excellence methods. It demonstrates that with the characteristic of deep learning with multi-scale information, the PSPNet-CONC model could generate higher accuracy and stability detection results than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, P., Gong, M., Su, L., Liu, J., Li, Z.: Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images. ISPRS J. Photogram. 116, 24–41 (2016)

    Article  Google Scholar 

  2. Stramondo, S., Bignami, C., Chini, M., Pierdicca, N., Tertulliani, A.: Satellite radar and optical remote sensing for earthquake damage detection: results from different case studies. Int. J. Remote Sens. 27(20), 4433–4447 (2006)

    Article  Google Scholar 

  3. Celik, T.: Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 6(4), 772–776 (2009)

    Article  Google Scholar 

  4. Daudt, R.C., Le Saux, B, Boulch, A.: Fully convolutional siamese networks for change detection. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 4063–4067. IEEE (2018)

    Google Scholar 

  5. Daudt, R.C., Le Saux, B, Boulch, A., Gousseau, Y.: Urban change detection for multispectral earth observation using convolutional neural networks. In: 2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018, pp. 2115–2118. IEEE (2018)

    Google Scholar 

  6. Deng, J., Wang, K., Deng, Y., Qi, G.: PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote Sens. 29(16), 4823–4838 (2008)

    Article  Google Scholar 

  7. Desclée, B., Bogaert, P., Defourny, P.: Forest change detection by statistical object-based method. Remote Sens. Environ. 102(1–2), 1–11 (2006)

    Article  Google Scholar 

  8. Huo, C., Zhou, Z., Lu, H., Pan, C., Chen, K.: Fast object-level change detection for VHR images. IEEE Geosci. 7(1), 118–122 (2009)

    Google Scholar 

  9. Wu, C., Du, B., Zhang, L.: Slow feature analysis for change detection in multispectral imagery. IEEE Trans. Geosci. 52(5), 2858–2874 (2013)

    Article  Google Scholar 

  10. Wu, C., Du, B., Cui, X., Zhang, L.: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion. IEEE Trans. Geosci. 199, 241–255 (2017)

    Google Scholar 

  11. Xian, G., Homer, C., Fry, J.: Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sens. Environ. 113(6), 1133–1147 (2009)

    Article  Google Scholar 

  12. Zhao, M., Zhao, Y.: Object-oriented and multi-feature hierarchical change detection based on CVA for high-resolution remote sensing imagery. Remote Sens. 22(1), 119–131 (2018)

    Google Scholar 

  13. Liu, S., Bruzzone, L., Bovolo, F., Zanetti, M., Du, P.: Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 53(8), 4363–4378 (2015)

    Article  Google Scholar 

  14. Yu, W., Zhou, W., Qian, Y., Yan, J.: A new approach for land cover classification and change analysis: integrating backdating and an object-based method. Remote Sens. Environ. 177, 37–47 (2016)

    Article  Google Scholar 

  15. Xian, G., Homer, C.: Updating the 2001 National Land Cover Database impervious surface products to 2006 using Landsat imagery change detection methods. Remote Sens. Environ. 114(8), 1676–1686 (2010)

    Article  Google Scholar 

  16. Falco, N., Marpu, P.R., Benediktsson, J.A.: A toolbox for unsupervised change detection analysis. Int. J. Remote Sens. 37(7), 1505–1526 (2016)

    Article  Google Scholar 

  17. Nielsen, A.A., Conradsen, K., Simpson, J.J.: Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: new approaches to change detection studies. Remote Sens. Environ. 64(1), 1–19 (1998)

    Article  Google Scholar 

  18. Bovolo, F., Bruzzone, L.: A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain. IEEE Trans. Geosci. 45(1), 218–236 (2006)

    Article  Google Scholar 

  19. Qi, Z., Yeh, A.G.-O., Li, X., Zhang, X.: A three-component method for timely detection of land cover changes using polarimetric SAR images. ISPRS J. Photogram. Remote Sens. 107, 3–21 (2015)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  23. Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intell. 27(2), 83–85 (2005)

    Google Scholar 

  24. Wiemker, R., Speck, A., Kulbach, D., Spitzer, H., Bienlein, J.: Unsupervised robust change detection on multispectral imagery using spectral and spatial features. In: Proceedings of the Third International Airborne Remote Sensing Conference and Exhibition, pp. 640–647 (1997)

    Google Scholar 

  25. Nielsen, A.A.: The regularized iteratively reweighted MAD method for change detection in multi-and hyperspectral data. IEEE Trans. Image Process. 16(2), 463–478 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfu Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, X., Fan, J., Zhang, P., Han, L., Zhang, D., Sun, G. (2020). Multi-scale Convolutional Neural Network for Remote Sensing Image Change Detection. In: Xie, Y., Li, Y., Yang, J., Xu, J., Deng, Y. (eds) Geoinformatics in Sustainable Ecosystem and Society. GSES GeoAI 2019 2019. Communications in Computer and Information Science, vol 1228. Springer, Singapore. https://doi.org/10.1007/978-981-15-6106-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6106-1_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6105-4

  • Online ISBN: 978-981-15-6106-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics