Skip to main content

Cable Net Design and Form-Finding of Cable and Truss Combined Structures

  • Chapter
  • First Online:
Large Deployable Satellite Antennas

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 706 Accesses

Abstract

To commemorate the great contribution of Galileo Galilei in the area of space, NASA launched a Jupiter probe named Galileo on October 11, 1989. The probe is equipped with a camera and a lower gain antenna that can measure Jupiter’s atmospheric, cloud and magnetic information. There are two kinds of spaceborne reflector antennas: axisymmetric (prime-feed) and non-axisymmetric (offset-feed) reflector antennas. The non-axisymmetric reflector antenna is mainly a cutting parabolic antenna. The cutting antenna here is generally not a ground warning or search antenna that is cut by two planes parallel to the axis but an antenna obtained from a cylinder intersecting the axisymmetric reflector. As a result, an elliptical reflector surface is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tibert AG (2003) Optimal design of tension truss antennas. The 44th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Norfolk, USA, 2003

    Google Scholar 

  2. Agrawal PK, Anderson MS, Card MF (1981) Preliminary design of large reflectors with flat facets. IEEE Trans Antenna Propag 29(4):688–694

    Google Scholar 

  3. Hedgepeth JM (1980) Accuracy potentials for large space antenna structures. The 39th annual conf. of the society of allied weight engineers, St. Louis, MO, USA

    Google Scholar 

  4. Miura K, Tanizawa K (1998) Tension truss antenna-concept, reality and future. IUTAM-IASS symposium on deployable structures: theory and applications. Cambridge, UK

    Google Scholar 

  5. Tibert G (2002) Deployable tensegrity structures for space applications [PhD Dissertation]. Stockholm, The Royal-Institute of Technology, Sweden

    Google Scholar 

  6. Li T, Zhou M, Duan B (2008) A method of form-finding analysis for flexible cable net structures of deployable antennas. J Astron 29(3):795–798

    Google Scholar 

  7. Shi H, Yang B, Thomson M et al (2012) Automatic surface mesh generation for design of space deployable mesh reflectors. The 53nd AIAA/ ASME/ ASCE/AHS/ASC structures, structural dynamics and materials conference, Honolulu of USA

    Google Scholar 

  8. Shi H, Yang B, Fang H. Offset-feed surface mesh generation for design of space deployable mesh reflectors. Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials, Boston ofUSA,2013

    Google Scholar 

  9. Shi-kun Z, You-zhi J, Zhao-yun C et al (2014) Design and analysis of HJ-1-C satellite SAR antenna. J Radars 3(3):266–273 (in Chinese)

    Google Scholar 

  10. Zongquan D (2013) Design of space folding mechanism. Harbin Institute of Technology Press, Harbin (in Chinese)

    Google Scholar 

  11. Meguroa A, Harada S, Watanabe M (2003) Key technologies for high-accuracy large mesh antenna reflectors. Acta Astronaut 53(11):899–908

    Article  Google Scholar 

  12. Santiago J, Baier H (2013) Advances in deployable structures and surfaces for large apertures in space. Ceas Space J 5(3):89–115

    Article  Google Scholar 

  13. Thomson MW (2000) The AstroMesh deployable reflector. IUTAM-IASS symposium on deployable structures: theory and applications. Springer Netherlands, 435–446

    Google Scholar 

  14. Veenendaal D, Block P (2012) An overview and comparison of structural form finding methods for general networks. Int J Solids Struct 49(37):41–53

    Google Scholar 

  15. Dongwu Y, Yuanying Q, Hong B (2012) Least-norm method for pretension optimization of mesh reflector. J Mech Eng 48(21):22–27

    Google Scholar 

  16. Gang L, Fu-ling G (2005) Pretension optimization in parabolic cable net of AstroMesh deployable reflector. J Zhejiang Univ 39(1):1557–1560 (in Chinese)

    Google Scholar 

  17. Yang B, Shi H, Thomson M (2009) Optimal design of initial surface profile of deployable mesh reflectors via static modeling and quadratic programming. The 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamic and material conference. Palm Springs, California, USA

    Google Scholar 

  18. Liu W, Li DX (2013) Simple technique for form-finding and tension determining of cable-network antenna reflectors. J Spacecraft Rockets 50(2):479–481

    Article  Google Scholar 

  19. Morterolle S, Maurin B, Quirant J (2012) Numerical form-finding of geotensoid tension truss for mesh reflector. Acta Astronaut 76:154–163

    Article  Google Scholar 

  20. Tanaka H, Shimozono N, Natori MC (2008) A design method for cable network structures considering the flexibility of supporting structures. Trans Jpn Soc Aeronaut Space Sci 50(170):267–273

    Article  Google Scholar 

  21. Guo-qiang Y, Jie Z (2012) Structural Analysis and design for cable net of deployable antenna. Eng Mech 29(11):306–312

    Google Scholar 

  22. Ma XF, Song YP, Li ZJ et al (2013) Mesh reflector antennas: form-finding analysis review. The 54th AIAA/ASME/ASCE/AHS/ASC conference on Structures, Structural Dynamic and Material, Boston, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duan, B., Zhang, Y., Du, J. (2020). Cable Net Design and Form-Finding of Cable and Truss Combined Structures. In: Large Deployable Satellite Antennas. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-6033-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6033-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6032-3

  • Online ISBN: 978-981-15-6033-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics