Skip to main content

Introduction

  • Chapter
  • First Online:
  • 777 Accesses

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

In August 1972, Orbiting Astronomical Observatory No 3 (OAO-3) of the USA was launched. To commemorate the 500-year anniversary of the birth of the great scientist Nicolaus Copernicus, it was named the Copernicus Satellite. Copernicus’s heliocentrism gave rise to a revolution in human understanding of the universe. To explore space, launching satellites with antennas is the first step. As a result, spaceborne antennas have been widely used in communication, reconnaissance, navigation, remote sensing, deep-space exploration, radio astronomy and so on because they are the “eyes” and “ears” of satellite systems and play a key role in the implementation of satellite functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kunkee D, Poe GA, Boucher D et al (2008) Design and evaluation of the first special sensor microwave imager/sounder (SSMIS). IEEE Transa Geosci Remote Sens 46(4):863–883

    Google Scholar 

  2. Cherny IV, Chernyavsky GM, Nakonechny VP et al (2002) Spacecraft ‘Meteor-3 M’ microwave imager/sounder MTVZA: First results. In: Proceedings of IGARSS’02 symposium, Toronto, Canada, pp 2660–2662

    Google Scholar 

  3. Im E, Thomson M, Fang HF (2007) Prospects of large deployable reflector antennas for a new generation of geostationary Doppler weather radar satellite. In: Proceedings of AIAA space 2007 conference & exposition, Long Beach, California, USA, pp 66–174

    Google Scholar 

  4. Takano T (1999) Large deployable antennas concepts and realization. Proceedings of IEEE Antennas and Propagation Society International Symposium, Orlando, Florida, USA, pp 1512–1515

    Google Scholar 

  5. Freeland RE (1983) Survey of deployable antenna concepts. NASA Langley Research Center, Hampton, Virginia, USA, pp 613–652

    Google Scholar 

  6. Misawa M (1998) Stiffness design of deployable satellite antennas in deployed configuration. J Spacecraft Rockets 35(3):380–386

    Google Scholar 

  7. Soykasap O, Watt AM, Pellegrino S (2004) New deployable reflector concept. In: Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Palm Spring, California, USA

    Google Scholar 

  8. Barer H, Datashvili L, Gogava Z et al (2001) Building blocks of large deployable precision membrane reflectors. In: Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference and exhibit, Seattle, Washington, USA

    Google Scholar 

  9. Mikulas J, Collins TJ, Hedgepeth JM (1991) Preliminary design considerations for 10–40 meter-diameter precision truss reflectors. J Spacecraft Rockets 28(4):439–447

    Google Scholar 

  10. Miyasaki A, Homma M, Tsujigate A et al (2001) Design and ground verification of large deployable reflector. In: Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference and exhibit, Seattle, Washington, USA

    Google Scholar 

  11. Natori MC, Takano T, Noda T et al (1998) Ground adjustment procedure of a deployable high accuracy mesh antenna for space VLBI mission. In: Proceedings of the 39th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference and exhibit and AIAA/ASME/AHS adaptive structures forum, Long Beach, California, USA

    Google Scholar 

  12. Rogers CA, Stutzman WL, Campbell TG et al (1993) Technology assessment and development of large deployable antennas. J Aerosp Eng 6(1):34–55

    Google Scholar 

  13. Duan B, Li T (2007) Large deployable antenna and its application in aerospace. In: Proceedings of the 2nd aerospace electronic information supporting development strategy forum, Nanjing, China, pp 245–253. (in Chinese)

    Google Scholar 

  14. Zhang G, Zhao Y (2004) Application of micro electro mechanical system in phased array antenna. J Electromechan Eng 20(6):1–13 (in Chinese)

    Google Scholar 

  15. Sieracki V (2000) Advances in MEMs for RF technology. In: Proceedings of AOC radar and EW conference session 2: technology developments & impact on Radar/ESM

    Google Scholar 

  16. Escrig F (1985) Expandable space structures. Int J Space Struct 1(2):79–91

    Google Scholar 

  17. Guest SD, Pelegrino S (1996) A new concept for solid surface deployable antennas. Acta Astronaut 38(2):103–113

    Google Scholar 

  18. Liu R, Tian D, Deng Z (2010) Research status and prospects of spaceborne deployable antenna structure. Mech Design 27(9):1–21 (in Chinese)

    Google Scholar 

  19. Li T, Ma X (2012) Large spaceborne expandable antenna technology. Space Electron 9(3):35–43 (in Chinese)

    Google Scholar 

  20. Lichod Z (2003) Inflatable deployed membrane waveguide array antennaforspace. In: Proceedings of AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Norfolk, USA

    Google Scholar 

  21. Guan F, Li G, Xia J (2003) Inflatable expandable space structure. In: Proceedings of the symposium on satellite structure and institutional technology progress, Xi’an, China. (in Chinese)

    Google Scholar 

  22. Di J (2005) Research on optimization and adjustment technology of reflecting surface accuracy of cable net deployable antenna structure. Ph.D. Thesis, Xidian University, Xi’an, China. (in Chinese)

    Google Scholar 

  23. Huang J (2001) The development of inflatable array antennas. IEEE Antennas Propag Mag 43(4):44–50

    Google Scholar 

  24. Huang J, Lou M, Feria A et al (1998) An inflatable L band microstrip SAR array. In: Proceedings of IEEE antennas and propagation society international symposium. Atlanta, Georgia, USA, pp 2100–2103

    Google Scholar 

  25. Cassapakis CG, Love AW, Palisoc AL (1998) Inflate spaceborne antennas: a brief overview. In: Proceedings of 1998 IEEE aerospace conference, Snowmass, Colombia, USA, pp 453–459

    Google Scholar 

  26. Wang Y (2003) Inflatable antenna structure technology overview. Telecommun Technol 43(2):6–11 (in Chinese)

    Google Scholar 

  27. Akira M, Satoshi H, Mitsunobu W (2003) Key technologies for high-accuracy large mesh antenna reflectors. Acta Astronaut 53(11):899–908

    Google Scholar 

  28. Love AW (1976) Some highlights in reflector antenna development. Radio Sci 11(8-9):671–684

    Google Scholar 

  29. Miura K, Miyazaki Y (1990) Concept of the tension truss antenna. AIAA Journal 28(6):1098–1104

    Google Scholar 

  30. Mikulas MM, Collins TJ, Hedgepeth JM (1990) Preliminary design approach for large high precision segmented reflectors. NASA Technical Memorandum, TM 261050

    Google Scholar 

  31. Semler D, Tulintseff A, Sorrell R et al (2010) Design, integration and deployment of the TerreStar 18-meter reflector. In: Proceedings of the 28th AIAA international communications satellite systems conference, California, USA

    Google Scholar 

  32. Akira M, Kyoji S, Motofumi U et al (2009) In-orbit deployment characteristics of large deployable antenna reflector onboard Engineering Test Satellite VIII. Acta Astronaut 65(9):1306–1316

    Google Scholar 

  33. Canada, USA, SkyTerra 1, 2 (MSV1, 2, SA) http://space.skyrocket.de/docsdat/skyterra-1.htm, 2016-10-02

  34. Zhang P, Jin G, Shi G (2009) Research and development status of space film mirrors. China Opt Appl Optics 2(2):91–101 (in Chinese)

    Google Scholar 

  35. Geoff P, Randall J (2002) Large aperture holographically corrected membrane telescope. Opt Eng 41(7):1603–1607

    Google Scholar 

  36. Palisoc L (2000) Large telescope using a holographically-corrected membrane mirror-final report to the NASA Institute for advanced concepts. L’Garde, Inc., Technical Report, LTR00-AP-021

    Google Scholar 

  37. Errico S, Angle R, Stamper B et al (2002) Stretched membrane with electrostatic curvature (SMEC) mirrors: A new technology for large lightweight spaceborne telescopes. In: International optical design conference, Tucson, Arizona, United States, pp 356–364

    Google Scholar 

  38. Angle R, Burge J, Hege K et al (2000) Stretched membrane with electrostatic curvature (SMEC) mirrors: a new technology for ultra-lightweight spaceborne telescopes. In: Proceedings of SPIE, pp 699–705

    Google Scholar 

  39. Burley GS, Stilburm JR, Walker GAH (1998) Membrane mirror and bias electronics. Appl Opt 37(21):4649–4655

    Google Scholar 

  40. Soh M, Lee JH, Youn SK (2005) An inflatable circular membrane mirror for spaceborne telescopes. Proc Opt Design Testing II, Proc SPIE 56(38):262–271

    Google Scholar 

  41. Rai E, Nishimoto S, Katada T et al (1996) Historical overview of phased array antennas for defense application in Japan. In: Proceedings of IEEE international symposium on phased array systems and technology, Tokyo, Japan

    Google Scholar 

  42. Brejcha AG, Keeler LH, Sanford GG (1978) The SEASAT–a synthetic aperture radar antenna. In: Proceedings of synthetic aperture radar technology conference, Las Cruces, New Mexico, USA

    Google Scholar 

  43. Ward JC (1979) “Large space systems technology-1979”, NASA Conference Publication 2118, First Annual Program Technical Review, NASA LRC, Hampton, USA, pp 157–171

    Google Scholar 

  44. Kopriver F (1980) “Large space systems technology-1980”, NASA Conference Publication 2168, Second Annual Technical Review, NASA LRC, Hampton, USA

    Google Scholar 

  45. Larson TR (1981) A microstrip honeycomb array for the low altitude space-based radar mission. Ball Aerosp Syst Div, F81-06

    Google Scholar 

  46. Tauno VH, Koen VC (2007) RF MEMS impedance tuners for 6-24 GHz applications. Int J RF Microwave Comput Aided Eng 17(3):265–278

    Google Scholar 

  47. Ramadoss R, Lee S, Lee YC et al (2007) MEMS capacitive series switch fabricated using PCB technology. Int J RF Microwave Comput Aided Eng 17(4):387–397

    Google Scholar 

  48. Ramadoss R, Lee S, Lee YC et al (2006) RF-MEMS capacitive switch fabricated using printed circuit processing techniques. J Microelectromech Syst 15(6):1595–1604

    Google Scholar 

  49. Malczewski A, Eshelman S (1999) X-band RF MEMS phase shifters for phased array applications. IEEE Microwave Guided Wave Letters 9(12):517–518

    Google Scholar 

  50. Alastalo A (2006) Microelectromechanical resonator-based components for wireless communications: filters and transmission lines. VTT Publications 616, Espoo, Finland

    Google Scholar 

  51. Yu L, Andrea B (2001) Distributed MEMS transmission lines for tunable filter applications. John Wiley & Sons Incorporated, New York, USA

    Google Scholar 

  52. Erdil E, Topalli K, Unlu M et al (2007) Frequency tunable microstrip patch antenna using RF MEMS technology. IEEE Trans Antennas Propag 55(4):1193–1196

    Google Scholar 

  53. Li S (2012) Review of RF MEMS technology and main problems. Space Electronic Technol 2012(4):6–13 (in Chinese)

    Google Scholar 

  54. Maciel JJ, Slocum JF, Smith JK et al (2007) MEMS electronically steerable antennas for fire control radars. Aerosp Electron Syst Mag 22(11):17–20

    Google Scholar 

  55. Chiao JC, Cheng SY, Jeff JL et al (2001) MEMS reconfigurable antennas. Int J RF Microwave Comput Aided Eng 11(5):301–309

    Google Scholar 

  56. Coleman CM, Rothwell EJ, Ross JE et al (2002) Self-structuring antennas. IEEE Trans Antennas Propag 44(3):11–23

    Google Scholar 

  57. Weily AR, Guo YJ (2007) An aperture coupled patch antenna system with MEMS-based reconfigurable polarization. In: Proceedings of IEEE international symposium on communications and information technologies, Sydney, Australia, pp 325–328

    Google Scholar 

  58. Khaleghi A, Kamyab M (2009) Reconfigurable single port antenna with circular polarization diversity. IEEE Trans Antennas Propag 57(2):555–559

    Google Scholar 

  59. Kovitz J, Rajagopalan H, Rahmat-Samii Y (2015) Design and implementation of broadband MEMS RHCP/LHCP reconfigurable arrays using rotated E-shaped patch elements. IEEE Trans Antennas Propag 63(6):2497–2507

    MathSciNet  MATH  Google Scholar 

  60. Hsu SH, Chang K (2007) A novel reconfigurable microstrip antenna with switchable circular polarization. Antennas Wirel Propag Lett IEEE 6(11):160–162

    Google Scholar 

  61. Hum SV, Okoniewski M, Davies RJ (2007) Modeling and design of electronically tunable reflect arrays. IEEE Trans Antennas Propag 55(8):2200–2210

    Google Scholar 

  62. Qiu Y, Ye S, Liu M (1992) Dynamic analysis of elastic mechanism considering hinge flexibility and friction. J Electromech Eng 1992(5):11–17 (in Chinese)

    Google Scholar 

  63. Liu M, Wang Y (2002) Variable structural dynamic analysis and control. Mech Sci Technol 21(11):23–24 (in Chinese)

    Google Scholar 

  64. Feng L, Ye S, Liu M (2000) Research on symbolic calculus of multi-flexible system dynamics. Math Rese Comment 20(1):143–148 (in Chinese)

    Google Scholar 

  65. Tan Z, Ye S, Liu M (1994) Dynamic multibody system dynamics research and existing problems. Progress Mech 24(2):248–256 (in Chinese)

    Google Scholar 

  66. Tan Z, Ye S, Liu M (1994) Dynamics of flexible multibody system dynamics, Mechanics and practice. Mech Eng 16(5):14–19 (in Chinese)

    Google Scholar 

  67. Qiu Y, Liu M (1992) Expansion dynamics of large spaceborne deployable antennas. Chinese Space Sci Technol 1992(1):1–7 (in Chinese)

    MathSciNet  Google Scholar 

  68. Wang J, Liu M (2009) Large-scale spaceborne deployable antenna dynamics modeling and simulation. J Syst Simul 21(6):1730–1733 (in Chinese)

    Google Scholar 

  69. Wang J, Liu M, Zhao Y (2009) Research on combined control of large spaceborne deployable antenna deployment process. China Mech Eng 20(6):728–732 (in Chinese)

    Google Scholar 

  70. Liu M, Li W, Zheng F (1998) Sub-ribbed mesh shaped reflective surface shape accuracy adjustment. J Xidian Univ 25(4):506–509

    Google Scholar 

  71. Li TJ, Wang Y (2009) Performance relationships between ground model and spaceborne prototype of deployable spaceborne antennas. Acta Astronaut 65(9):1383–1392

    Google Scholar 

  72. Li TJ, Wang Y (2009) Deployment dynamic analysis of deployable antennas considering thermal effect. Aerosp Sci Technol 13(4-5):210–215

    Google Scholar 

  73. Li TJ, Su JG (2011) Electrical properties analysis of wire mesh for mesh reflectors. Acta Astronaut 69(1-2):109–117

    Google Scholar 

  74. Li TJ, Su JG, CAO YY (2011) Dynamic characteristics analysis of deployable spaceborne structures considering joint clearance. Acta Astronautica 68(7–8): 974–9832011

    Google Scholar 

  75. Li TJ (2012) Deployment analysis and control of deployable spaceborne antenna. Aerosp Sci Technol 18(1):42–47

    Google Scholar 

  76. Du JL, Bao H, Yang DW et al (2012) Initial equilibrium configuration determination and shape adjustment of cable network structures. Mech Based Design Struct Mach 40(3):277–291

    Google Scholar 

  77. Zhang YQ, Duan BY, Li TJ (2012) A controlled deployment method for deployable flexible spaceborne antennas. Acta Aerosp 81(1):19–29

    Google Scholar 

  78. Zhang YQ, Ru WR, Xu HR (2015) A deployment trajectory design method based on the Bezier curves. J Comput Theor Nanosci 12(12):5288–5296

    Google Scholar 

  79. Zhang YQ, Ru WR, Yang GG et al (2016) Deployment analysis considering the cable-net tension effect for deployable antennas. Aerosp Sci Technol 48(1):193–202

    Google Scholar 

  80. Zhiqiang Dong and BaoyanDuan (2001) Study on mechanical properties of spaceborne antenna wound ribs. J Xidian Univ 28(6):755–758 (in Chinese)

    Google Scholar 

  81. Yang D (2010) Structural design and profile adjustment of spaceborne large expandable cable antenna. PhD Thesis, Xidian University, Xi’an, China. (in Chinese)

    Google Scholar 

  82. You G (2013) Morphological analysis and optimization of cable net deployable antenna. PhD Thesis, Xidian University, Xi’an, China. (in Chinese)

    Google Scholar 

  83. Zhang Y (2013) Integrated design of flexible spaceborne deployable antenna with structural and control technologies. Large Spaceborne Deployable Antennas (LSDAs)—A Comprehensive Summary 15 PhD Thesis, Xidian University, Xi’an, China. (in Chinese)

    Google Scholar 

  84. Zong Y (2015) Influence of structural random factors on electronic performance of spaceborne mesh reflector antennas and optimum design. PhD Thesis, Xidian University, Xi’an, China. (in Chinese)

    Google Scholar 

  85. Zhang S (2015) On integrated optimum design of reflector antennas with mechanical and electronic technologies. PhD Thesis, Xidian University, Xi’an, China. (in Chinese)

    Google Scholar 

  86. Hao J, Duan B et al (2015) The computer program of synthetic design and digital modeling for large deployable satellite antennas. Space Electron Technol 12(3):35–42 (in Chinese)

    Google Scholar 

  87. Pontoppidan K (2005) Technical description of GRASP9. Denmark, Copenhagen

    Google Scholar 

  88. Miura A, Rahmat-Samii Y (2007) Space-borne mesh reflector antennas with complex weaves: Extended PO/periodic-MoM analysis. IEEE Trans Antenna Propag 55(4):1022–1029

    Google Scholar 

  89. Gonzalez-Valdes B, Martinez-Lorenzo JA, Rappaport C et al (2008) Generating contoured beams with single-shaped reflector using an iterative field-matrix approach. Antennas Wirel Propag Lett IEEE 2008(7):697–700

    Google Scholar 

  90. Bergmann JR, Moreira FJS (2009) Omnidirectional ADE antenna with a GO-shaped main reflector for an arbitrary far-field pattern in the elevation plane. IET Microw Anten Propag 2009(3):1028–1035

    Google Scholar 

  91. Hiroaki T (2011) Surface error estimation and correction of a spaceborne antenna based on antenna gain analysis. Acta Astronaut 68(7):1062–1069

    Google Scholar 

  92. Natora MC, Hirabayashi H, Okuizumi N (2002) A structure concept of high precision mesh antenna for spaceborne VLBI observation. In: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Denver, Colorado, USA

    Google Scholar 

  93. Duan B (2005) Analysis, optimization and control of flexible microwave antenna structures. Science Press of China, Beijing, China. (in Chinese)

    Google Scholar 

  94. Surya PC, James DM, Jennie O (2006) Design evaluation of a large aperture deployable antenna. In: Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Newport, Kentucky, USA

    Google Scholar 

  95. Duan B (2004) Review of the development of electromechanical engineering. Electro-Mechan Eng 20(6):14–30 (in Chinese)

    Google Scholar 

  96. Bolli P (2002) Passive intermodulation on large reflector antennas. Antennas Propag Maga 44(5):13–19

    Google Scholar 

  97. Delaune D, Tanaka T, Onishi T et al (2004) Simple satellite tracking stacked patch array antenna for mobile communications experiments aiming at ETS-VIII applications. IEE Proc Microw Anten Propag 151(2):173–179

    Google Scholar 

  98. Lin JK, Fang HF, Im E et al (2006) Concept study of a 35 m spherical reflector system for NEXRAD in space application. Proceedings of the 47th AIAA structures, structural dynamics and materials conference, Newport, USA, 2006

    Google Scholar 

  99. Wilkie WK, Williams RB, Agnes GS et al (2007) Structural feasibility analysis of a robotically assembled very large aperture optical spaceborne telescope. Proceedings of the 48th AIAA structures, structural dynamics and materials conference, Honolulu, USA

    Google Scholar 

  100. Gayrard JD (2004) A very large patch receiving antenna for mobile communication satellites. In: Proceedings of the 22nd AIAA international communications satellite systems conference & exhibit, Monterey, USA

    Google Scholar 

  101. Baoyan D (2020) Large Spaceborne deployable antennas (LSDAs)—a comprehensive summary. Chinese J Electron 29(1):1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duan, B., Zhang, Y., Du, J. (2020). Introduction. In: Large Deployable Satellite Antennas. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-6033-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6033-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6032-3

  • Online ISBN: 978-981-15-6033-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics