Skip to main content

A Novel Mobile Based Hybrid Skin Tone Classification Algorithm for Cancer Detection

  • Conference paper
  • First Online:
Data Science and Analytics (REDSET 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1229))

  • 687 Accesses

Abstract

Human skin, epidermis, forms the largest organ of the human body. It plays an integral role as the outermost layer of the body by guarding internal organs from the environment, producing vitamin D which is important for various bodily functions and regulating body temperature. Skin ailments are a growing concern with a significant rise in cases reported in both developed and developing countries. With the rise in exposure to UV radiation, it is very important to detect skin cancer in its nascent stages which significantly increases chances of successful treatment. The proposed method seeks to use a single image captured from a standard smartphone and classify the input image as cancerous or non- cancerous. Multiple algorithms for feature extraction and classification are compared to obtain the maximum accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hay, R.J., Johns, N.E., Williams, H.C., et al.: The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J. Investig. Dermatol. Symp. Proc. 134, 1527–1534 (2014)

    Article  Google Scholar 

  2. Dalgard, F.J., Gieler, U., Tomas-Aragones, L., et al.: The psychological burden of skin diseases: a cross-sectional multicenter study among dermatological out-patients in 13 European countries. J. Invest. Dermatol. 135(4), 984–991 (2015). https://doi.org/10.1038/jid.2014.530

    Article  Google Scholar 

  3. World Health Organization. https://www.who.int/uv/faq/skincancer/en/index1.html

  4. Bray, F., et al.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. https://doi.org/10.3322/caac.21492

    Google Scholar 

  5. Glazer, A.M., Farberg, A.S., Winkelmann, R.R., Rigel, D.S.: Analysis of trends in geographic distribution and density of US dermatologists. JAMA Dermatol. 153(4), 322–325 (2017). https://doi.org/10.1001/jamadermatol.2016.5411

    Article  Google Scholar 

  6. Kaliyadan, F., Ashique, K.: A simple and cost-effective device for mobile dermoscopy. https://doi.org/10.4103/0378-6323.120740

    Article  Google Scholar 

  7. Murugan, A., Nair, S.H., Kumar, K.P.S.: Detection of skin cancer using SVM, Random Forest and kNN classifiers. J. Med. Syst. 43(8), 1–9 (2019). https://doi.org/10.1007/s10916-019-1400-8

    Article  Google Scholar 

  8. Ballerini, L., Fisher, R.B., Aldridge, B., Rees, J.: A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions. In: Celebi, M., Schaefer, G. (eds.) Color Medical Image Analysis, vol. 6, pp. 63–86. Springer, Heidelberg (2013). https://doi.org/10.1007/978-94-007-5389-1_4

    Chapter  Google Scholar 

  9. Dorj, U.-O., Lee, K.-K., Choi, J.-Y., Lee, M.: The skin cancer classification using deep convolutional neural network. Multimedia Tools Appl. 77(8), 9909–9924 (2018). https://doi.org/10.1007/s11042-018-5714-1

    Article  Google Scholar 

  10. Hekler, A., et al.: Superior skin cancer classification by the combination of human and artificial intelligence. https://doi.org/10.1016/j.ejca.2019.07.019

    Article  Google Scholar 

  11. Brinker, T.J., et al.: A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. https://doi.org/10.1016/j.ejca.2019.02.005

    Article  Google Scholar 

  12. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017). https://doi.org/10.1038/nature21056

    Article  Google Scholar 

  13. Jafari, M.H., et al.: Skin lesion segmentation in clinical images using deep learning. In: 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, pp. 337–342 (2016). https://doi.org/10.1109/ICPR.2016.7899656

  14. Nasr-Esfahani, E., et al.: Melanoma detection by analysis of clinical images using convolutional neural network. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, pp. 1373–1376 (2016). https://doi.org/10.1109/EMBC.2016.7590963

  15. Mikołajczyk, A., Grochowski, M.: Data augmentation for improving deep learning in image classification problem. In: 2018 International Interdisciplinary PhD Workshop (IIPhDW), Swinoujście, pp. 117-122 (2018). https://doi.org/10.1109/IIPHDW.2018.8388338

  16. Hameed, N., Shabut, A.M., Hossain, M.A.: Multi-class skin diseases classification using deep convolutional neural network and support vector machine. In: 2018 12th International Conference on Software, Knowledge, Information Management & Applications (SKIMA), Phnom Penh, Cambodia, pp. 1–7 (2018). https://doi.org/10.1109/SKIMA.2018.8631525

  17. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, vol. 1, pp. 886–893 (2005). https://doi.org/10.1109/CVPR.2005.177

  18. Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image description with local binary pattern histogram fourier features. In: Salberg, A.B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02230-2_7

    Chapter  Google Scholar 

  19. Cortes, C., Vapnik, V.: Mach. Learn. 20, 273 (1995). https://doi.org/10.1023/A:1022627411411

    Article  Google Scholar 

  20. Uhrig, R.E.: Introduction to artificial neural networks. In: Proceedings of IECON 1995 - 21st Annual Conference on IEEE Industrial Electronics, Orlando, FL, USA, vol. 1, pp. 33–37 (1995). https://doi.org/10.1109/IECON.1995.483329

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: 2012 Advances in Neural Information Processing Systems 25

    Google Scholar 

  22. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 (2014)

    Google Scholar 

  24. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, pp. 1–9 (2015). https://doi.org/10.1109/CVPR.2015.7298594

  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  26. Howard, A.G., et al.: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (2017) arXiv:1704.04861

  27. Codella, N.C.F., et al.: Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC) (2017). arXiv:1710.05006

  28. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161. https://doi.org/10.1038/sdata.2018.161

  29. Loshchilov, I., Hutter, F.: Fixing Weight Decay Regularization in Adam. ArXiv, abs/1711.05101 (2018)

    Google Scholar 

  30. Keskar, N.S., Socher, R.: Improving Generalization Performance by Switching from Adam to SGD. ArXiv, abs/1712.07628 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paarth Bir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bir, P., Balamurugan, B. (2020). A Novel Mobile Based Hybrid Skin Tone Classification Algorithm for Cancer Detection. In: Batra, U., Roy, N., Panda, B. (eds) Data Science and Analytics. REDSET 2019. Communications in Computer and Information Science, vol 1229. Springer, Singapore. https://doi.org/10.1007/978-981-15-5827-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5827-6_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5826-9

  • Online ISBN: 978-981-15-5827-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics