Skip to main content

A Collaborative Evolutionary Algorithm Based on Decomposition and Dominance for Many-Objective Knapsack Problems

  • Conference paper
  • First Online:
Artificial Intelligence Algorithms and Applications (ISICA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1205))

Included in the following conference series:

  • 2329 Accesses

Abstract

Multi-objective evolutionary algorithms (MOEAs) are popular for solving many-objective knapsack problems. Among various MOEAs, the multi-objective evolutionary algorithm based on decomposition (MOEA/D) behaves well. However, MOEA/D often retains multiple copies of one individual in the population, which might hamper the diversity of the population. To overcome the disadvantage, a collaborative evolutionary algorithm based on decomposition and dominance, called MOEA/D-DDC, is presented in this paper. It mainly adopts a decomposition-dominance collaboration mechanism. The mechanism consists of a decomposition-based population and a dominance-based archive. The decomposition-based population collects elite individuals for the dominance-based archive. Meanwhile the dominance-based archive assists to repair the decomposition-based population and heighten the diversity. The experiment results show that MOEA/D-DDC obtains the better set of solutions than MOEA/D for many-objective knapsack problems with 4 to 8 objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ishibuchi, H., Kaige, S., Narukawa, K.: Comparison between Lamarckian and Baldwinian repair on multiobjective 0/1 knapsack problems. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 370–385. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_26

    Chapter  Google Scholar 

  2. Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems. IEEE Trans. Evol. Comput. 19(2), 264–283 (2015)

    Article  Google Scholar 

  3. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  4. Wang, Y., Cai, Z.: A constrained optimization evolutionary algorithm based on multiobjective optimization techniques. In: IEEE Congress on Evolutionary Computation, pp. 1081–1087. IEEE (2005)

    Google Scholar 

  5. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  6. Köppen, M., Yoshida, K.: Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727–741. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_55

    Chapter  Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. Beumea, N., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  Google Scholar 

  9. Zhang, Q., Hui, L.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  MathSciNet  Google Scholar 

  10. Wang, Z., Zhang, Q., Zhou, A., Gong, M., Jiao, L.: Adaptive replacement strategies for MOEA/D. IEEE Trans. Cybern. 46(2), 474–486 (2017)

    Article  Google Scholar 

  11. Singh, H.K., Isaacs, A., Ray, T.: A Pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems. IEEE Trans. Evol. Comput. 15(4), 539–556 (2011)

    Article  Google Scholar 

  12. Cai, X., Yang, Z., Fan, Z., Zhang, Q.: Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization. IEEE Trans. Cybern. 47(9), 2824C–2837 (2017)

    Article  Google Scholar 

  13. Freire, H., de Moura Oliveira, P.B., Solteiro Pires, E.J., Bessa, M.: Many-objective optimization with corner-based search. Memetic Comput. 7(2), 105–118 (2015). https://doi.org/10.1007/s12293-015-0151-4

    Article  Google Scholar 

  14. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MathSciNet  Google Scholar 

  15. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of Guangdong Province, China, under Grant 2015A030313204, in part by the Pearl River S&T Nova Program of Guangzhou under Grant 2014J2200052, in part by the National Natural Science Foundation of China under Grant 61203310, Grant 61503087 and Grant 61702239, in part by the Fundamental Research Funds for the Central Universities, SCUT, under Grant 2017MS043, and the Project of Foshan Science and Technology Innovation Foundation under Grant 2016AG100291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqin Ying .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, H., Ying, W., Wu, Y., Zheng, K., Peng, S. (2020). A Collaborative Evolutionary Algorithm Based on Decomposition and Dominance for Many-Objective Knapsack Problems. In: Li, K., Li, W., Wang, H., Liu, Y. (eds) Artificial Intelligence Algorithms and Applications. ISICA 2019. Communications in Computer and Information Science, vol 1205. Springer, Singapore. https://doi.org/10.1007/978-981-15-5577-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5577-0_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5576-3

  • Online ISBN: 978-981-15-5577-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics