Realistic 5.9 GHz DSRC Vehicle-to-Vehicle Wireless Communication Protocols for Cooperative Collision Warning in Underground Mining

  • Abdellah ChehriEmail author
  • Hamou Chehri
  • Nadir Hakim
  • Rachid Saadane
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 185)


Industrial vehicle automation is a core component of the building Industry 4.0. The uses of self-driving vehicles, inspection robots, and vehicular ad hoc networks (VANETs) communications in the mining industry are expected to open significant opportunities for collecting and exchanging data, localization, collision warning, and up-to-date traffic to enhance both the safety of workers and increase the productivity. In this paper, we present a review of the large-scale fading channel at 5.9 GHz in confined areas. Then, the requirements for DSRC receiver performance for VANET applications in an underground mine is calculated. This paper also reports the overall performance evaluation of three existing routing protocols, namely, emergency message dissemination for vehicular environments (EMDV), enhanced multi-hop vehicular broadcast (MHVB), and efficient directional broadcast (EDB) for active safety applications. Finally, a comparative study of these three routing protocols for cooperative collision warning in underground mining galleries was evaluated.


VANET networks Cooperative collision warning Channel modeling Underground mine Channel measurement 


  1. 1.
    Bhoi, S.K., Khilar, P.M.: Vehicular Communication—a survey. IET Netw. 3(3), 204–217 (2014)CrossRefGoogle Scholar
  2. 2.
    Alotaibi, M.M., Mouftah, H.T.: Relay selection for heterogeneous transmission powers in VANETs. IEEE Access 5, 4870–4886 (2017)CrossRefGoogle Scholar
  3. 3.
    MacHardy, Z., Khan, A., Obana, K., Iwashina, S.: V2X access technologies: regulation research and remaining challenges. IEEE Commun. Sur. Tut. 20(3), 1858–1877 (2018)CrossRefGoogle Scholar
  4. 4.
    Gokulakrishnan, P., Ganeshkumar. P: Road accident prevention with instant emergency warning message dissemination in vehicular ad-hoc network. PloS One 10(5) (2015)Google Scholar
  5. 5.
    Yu, M.Y., Song, J., Zheng, K, Guo, Y: A beacon transmission power control algorithm based on wireless channel load forecasting in VANETs. PloS One 10(11) (2015)Google Scholar
  6. 6.
    van Nunen, E., Kwakkernaat, R., Ploeg, J., Netten, B.D.: Cooperative competition for future mobility. Intell. Transp. Syst. IEEE Trans. 13(3), 1018–1025 (2012)CrossRefGoogle Scholar
  7. 7.
    Tang, T.-Q., et al.: An extended car-following model with consideration of the reliability of inter-vehicle communication. Measurement 58, 286–293 (2014)CrossRefGoogle Scholar
  8. 8.
    Kesting, M., Treiber, D., Helbing, D.: Connectivity statistics of store-and-forward intervehicle communication. Intell. Transp. Syst. IEEE Trans. 11(1), 72–81 (2010)CrossRefGoogle Scholar
  9. 9.
    Duff, E.S., Roberts, J.M., Corke, P.I: Automation of an underground mining vehicle using reactive navigation and opportunistic localization. In: Australasian Conference on Robotics and Automation, pp. 151–156. Auckland (2002)Google Scholar
  10. 10.
    Dragt, B.J: Modeling and control of an autonomous underground vehicle. University of Pretoria (2006)Google Scholar
  11. 11.
    Chehri, A., Fortier, P., Tardif, P.-M.: Security monitoring using wireless sensor networks. In: IEEE Communication Networks and Services Research, CNSR’07, pp. 13–17 (2007)Google Scholar
  12. 12.
    Chehri, A., Fortier, P., Tardif, P.M.: An investigation of UWB-based wireless networks in industrial automation. Int. J. Comput. Sci. Netw. Secur. 8(2), 179–188 (2008)Google Scholar
  13. 13.
    El Ouahmani, T., Chehri, A., Hakem, N.: Bio-inspired routing protocol in VANET networks—a case study. In: Elsevier’s Procedia Computer Science, 23rd International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, Budapest, Hungary (2019)Google Scholar
  14. 14.
    Karedal, J., Czink, N., Paier, A., Tufvesson, F., Molisch, A.F.: Path loss modeling for vehicle-to-vehicle communications. IEEE Trans. Veh. Technol. 60(1), 323–328 (2011)CrossRefGoogle Scholar
  15. 15.
    Cheng, L., Henty, B.E., Stancil, D.D., Bai, F., Mudalige, P.: Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short-range communication (DSRC) frequency band. IEEE J. Sel. Areas Commun. 25(8), 1501–1516 (2007)CrossRefGoogle Scholar
  16. 16.
    Molisch, A.F., Tufvesson, F., Karedal, J., Mecklenbrauker, C.F.: A survey on vehicle-to-vehicle propagation channels. IEEE Wirel. Commun. 16(6), 12–22 (2009)CrossRefGoogle Scholar
  17. 17.
    Schumacher, H., et al.: Vehicle-to-vehicle 802.11p performance measurements at urban intersections. In: Proceedings of IEEE ICC, Workshop on Intelligent Vehicular Networking, pp. 10–15. Ottawa, ON (2012)Google Scholar
  18. 18.
    Bernado, L., Roma, A., Paier, A., Zemen, T., et al.: In-tunnel vehicular radio channel characterization. In: Proceedings of IEEE Spring VTC, Budapest, Hungary, 15–18 May (2011)Google Scholar
  19. 19.
    Chehri, H., Chehri, A., Hakem, N.: In underground vehicular radio channel characterization. In: Elsevier’s Procedia Computer Science, 23rd International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, Budapest, Hungary (2019)Google Scholar
  20. 20.
    Chehri, H., Chehri, A., Hakem, N.: Empirical radio channel characterization at 5.9 GHz for vehicle-to-infrastructure communication. In: IEEE 90th Vehicular Technology Conference, Hawaii, USA, 22–25 Sept (2019)Google Scholar
  21. 21.
    Chehri, H., Hakem, M.: Large scale propagation analysis of vehicle-to-vehicle communications at 5.9 GHz. In: IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 6–11 Memphis, Tennessee, USA (2014)Google Scholar
  22. 22.
    Viriyasitavat, W., Boban, M., Tsai, H.M., Vasilakos, A.: Vehicular communications: survey and challenges of channel and propagation models. IEEE Veh. Technol. Mag. 10, 55–66 (2015)CrossRefGoogle Scholar
  23. 23.
    Sun, R., Matolak, D.W., Liu, P.: 5 GHz V2V channel characteristics for parking garages. IEEE Trans. Veh. Technol. (2016)Google Scholar
  24. 24.
    Masson, E., Combeau, P., Berbineau, M., et al.: Radio wave propagation in arched cross section tunnels-simulations and measurements. J. Commun. 4(4), 276–283 (2009)CrossRefGoogle Scholar
  25. 25.
    Bernado, L., Roma, A., Paier, A., Zemen, T., et al.: In-tunnel vehicular radio channel characterization. In: Vehicular Technology Conference, pp. 1–5 (2011)Google Scholar
  26. 26.
    Shivaldova, V., et al: Performance analysis of vehicle-to-vehicle tunnel measurements at 5.9 GHz. In: 30th URSI General Assembly and Scientific Symposium (URSIGASS’11), IEEE, Istanbul, Turkey (2011)Google Scholar
  27. 27.
    Loredo, S., del Castillo, A., et al.: Small-scale fading analysis of the vehicular-to-vehicular channel inside tunnels. Wirel. Commun. Mobile Comput. 2017(1987437) (2017)CrossRefGoogle Scholar
  28. 28.
    Bernado, L., Zemen, T., Tufvesson, F., Molisch, A.F., Mecklenbrauker, C.F.: Delay and doppler spreads of non-stationary vehicular channels for safety relevant scenarios. (2013) CoRR vol. abs/1305.3376Google Scholar
  29. 29.
    Hrovat, A., kandus, G., Javornuc, T.: A survey of radio propagation modeling for tunnels. IEEE Commun. Surv. Tutor. 16(2), 658–69 (2014)CrossRefGoogle Scholar
  30. 30.
    Qureshi, M.A., Noor, R.M., Shamim, A., Shamshirband, S., Choo, K.K.R.: A lightweight radio propagation model for vehicular communication in road tunnels, PloS One 11(3) (2016)CrossRefGoogle Scholar
  31. 31.
    Bilstrup, K., Uhlemann, E., Stroom, E., Bilstrup, U.: On the ability of the 802.11p MAC method and STDMA to support real-time vehicle-to vehicle communication. J. Wireless Commun. Netw. 1–13 (2009)Google Scholar
  32. 32.
    Al Hanbali, A., Altman, E., Nain, P.: A survey of TCP over ad hoc networks. IEEE Commun. Surv. Tutor. 2009, 22–36 (2005)CrossRefGoogle Scholar
  33. 33.
    Torrent-Moreno, M, et al.: Vehicle-to-vehicle communication: fair transmit power control for safety-critical information. IEEE Trans. Veh. Tech. 58(7) (2009)CrossRefGoogle Scholar
  34. 34.
    Mariyasagayam, M.N., Osafune, M., Lenardi, M: Enhanced multi-hop vehicular broadcast (MHVB) for active safety applications. In: 7th IEEE International Conference on ITS Telecommunications (2007)Google Scholar
  35. 35.
    Chehri, A., El Ouahmani, T., Hakem, N.: Mining and IoT-based vehicle ad-hoc network: industry opportunities and innovation. Internet Things 100117 (2019). ISSN: 2542-6605Google Scholar
  36. 36.
    Li, D., Huang, H., Li, X., Li, M., Tang, F.: A distance-based directional broadcast protocol for urban vehicular ad hoc network. In: IEEE (2007)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Abdellah Chehri
    • 1
    Email author
  • Hamou Chehri
    • 2
  • Nadir Hakim
    • 3
  • Rachid Saadane
    • 4
  1. 1.Department of Applied SciencesUniversity of Québec in ChicoutimiSaguenay Canada
  2. 2.Bell-CanadaMontrealCanada
  3. 3.LRTCS LaboratoryUniversity of Quebec in Abitibi-Témiscamingue (UQAT)Val-D’OrCanada
  4. 4.Laboratory Engineering SystemSIRC/LAGeS-EHTPEl JadidaMorocco

Personalised recommendations