Advertisement

A Decision Support System Based on Transport Modeling for Events Management in Public Transport Networks

  • Luca StuderEmail author
  • Paolo Gandini
  • Giovanna Marchionni
  • Marco Ponti
  • Sergio Arduca
  • Serio Agriesti
Conference paper
  • 60 Downloads
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 185)

Abstract

This paper presents a modeling approach developed within the MOTUS project, designed to provide a standardized and solid intervention proposal to face events and disruption on a public transport network. This modeling approach resulted into a tool capable of identify in a formalized way the nodes and links where to broadcast info-mobility information through ITS systems and to lead the users to the best alternative solutions. The tool is exploited to make the decision process less dependent on the expert judgment (that still plays a vital role) and human factors, to allow the service provider to respond in a faster and clear way to the possible disruptions both through info-mobility and the strengthening of the offer on the involved routes. Therefore, this paper describes how the modeling approach is applied, how the resulting tool can be exploited, and finally provides an example on the city of Milan, simulating the closure of one of the main lines and reporting the results provided by the presented model and the developed tool.

Keywords

Disruption management Transport modeling ITS Decision support system Public transport Emergency management 

Notes

Acknowledgements

The developed tools described in this paper are the results of a collaboration activity between Citilabs and the Mobility and Transport Laboratory—Politecnico di Milano.

References

  1. 1.
    Sun, H., Wu, J., Wu, L., Yan, X., Gao, Z.: Estimating the influence of common disruptions on urban rail transit networks. Trans. Res. Part A. (2016)Google Scholar
  2. 2.
    Binder, S., Maknoon, Y., Bierlaire, M.: The multi-objective railway timetable rescheduling problem. Trans. Res. Part C (2017)Google Scholar
  3. 3.
    Veelenturf, L.P., Kidd, M.P., Cacchiani, V., Kroon, L.G., Toth, P.: A railway timetable rescheduling approach for handling large-scale disruptions. Trans. Sci. 50(3), 841–862 (2016).  https://doi.org/10.1287/trsc.2015.0618CrossRefGoogle Scholar
  4. 4.
    Dollevoet, T., Veelenturf, L.P., Wagenaar, J.C., Huisman, D., Kroon, L.G.: Application of an iterative framework for real-time railway rescheduling. Comput. Oper. Res. (2016)Google Scholar
  5. 5.
    Mattsson, L.G., Jenelius, E.: Vulnerability and resilience of transport systems—a discussion of recent research. Trans. Res. Part A (2015)Google Scholar
  6. 6.
    Yang, Y., Liu, Y., Zhou, M., Li, F., Sun, C.: Robustness assessment of urban rail transit based on complex network theory: a case study of the Beijing subway. Saf. Sci. (2015)Google Scholar
  7. 7.
    Kiefer, A., Kritzinger, S., Doerner, K.F.: Disruption management for the Viennese public transport provider. Public Transport. (2016)Google Scholar
  8. 8.
    Botte, M., D’Acierno, L., Montella, B., Placido, A.: A stochastic approach for assessing intervention strategies in the case of metro system failures. In: AEIT (2015)Google Scholar
  9. 9.
    Russo, F., Vitetta, A.: Metodi per l’analisi dei sistemi di trasporto in condizioni di emergenza. In: Angeli, F. (ed), Milan (2004)Google Scholar
  10. 10.
    Velonà, P., Vitetta, A.: Analisi e gestione della domanda di una rete di trasporto in condizioni di emergenza mediante procedure di assegnazione pseudo-dinamica. In: Angeli, F. (ed), Milan (2004)Google Scholar
  11. 11.
    Russo, F.: Un approccio dinamico alla modellizzazione della scelta del percorso nei sistemi di trasporto collettivo in presenza di variazioni interperiodali dell’offerta. F. Angeli, Milan (2001)Google Scholar
  12. 12.
    Studer, L., Marchionni, G., Arditi, R., Maja, R., Ponti, M.: Trans-Alps: a transport model supporting traffic management in the Alps. In: VI th European Congress and Exhibitions on Intelligent Transport Systems and Services. Aalborg, 18–20 June (2007)Google Scholar
  13. 13.
    Studer, L., Marchionni, G., Ponti, M.: Evalutation of travel and traffic information between Italy and Slovenia in the Promet Project. In: ISEP 2009—Sustainable Transport and Mobility. 26/3/2009, Ljubljana, pp. R61–R64Google Scholar
  14. 14.
    Wang, S., Zhang, W., Qu, X.: Trial-and-error train fare design scheme for addressing boarding/alighting congestion at CBD stations. Transp. Res. Part B 118, 318–335 (2018)CrossRefGoogle Scholar
  15. 15.
    Meng, Q., Qu, X.: Bus dwell time estimation at bus bays: a probabilistic approach. Transp. Res. Part C 36, 61–71 (2018)Google Scholar
  16. 16.
    Cats, O., Jenelius, E.: Dynamic vulnerability analysis of public transport networks: mitigation effects of real-time information. Netw. Spat. Econ. (2011)Google Scholar
  17. 17.
    Cebon, P., Samson, D.: Using real time information for transport effectiveness in cities. City Cult. Soc. (20110Google Scholar
  18. 18.
    Grotenhuis, J., Wiegmans, B.W., Rietveld, P.: The desired quality of integrated multimodal travel information in public transport: customer needs for time and effort savings. Transp. Policy (2007)Google Scholar
  19. 19.
    Bruglieri, M., Bruschi, F., Colorni, A., Luè, A., Nocerino, R., Rana, V.: A real-time information system for public transport in case of delays and service disruptions. Transp. Res. Procedia 10 (2015)CrossRefGoogle Scholar
  20. 20.
    V&B Software Services Ltd.: Sviluppo di un modello del trasporto pubblico della città di Milano, finalizzato all’analisi dell’impatto di “emergenze” sul sistema. CITILABS Google Scholar
  21. 21.
    Arduca, S.: Metodologie e strumenti modellistici a supporto della gestione del trasporto pubblico locale in caso di eventi perturbativi rilevanti: ottimizzazione dei flussi e gestione delle informazioni all’utenza. Politecnico di Milano, Milan (2015)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Luca Studer
    • 1
    Email author
  • Paolo Gandini
    • 1
  • Giovanna Marchionni
    • 1
  • Marco Ponti
    • 1
  • Sergio Arduca
    • 2
  • Serio Agriesti
    • 1
  1. 1.Mobility and Transport LaboratoryPolitecnico Di Milano, Dipartimento Di DesignMilanItaly
  2. 2.Direzione Tecnica—Unità Coordinamento Manutenzione ImpiantiMilan MunicipalityMilanItaly

Personalised recommendations