Skip to main content

Synthetic Strategies for One-Dimensional/One-Dimensional Analogue Nanomaterials

  • Chapter
  • First Online:
One-dimensional Transition Metal Oxides and Their Analogues for Batteries

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 300 Accesses

Abstract

1D nanostructures have attracted extensive interest in energy storage applications because of their large surface-to-volume ratio and electrode-electrolyte contact area, short ion diffusion distance and charge-discharge time. This chapter shows the various methods for synthesizing 1D/1D analogue nanomaterials, with a special emphasis on new synthetic methodologies, including electrospinning, the Kirkendall effect, Ostwald ripening, heterogeneous contraction, and template-assisted synthesis. These preparation processes are controllable and highly effective for obtaining 1D/1D analogue nanomaterials with different porosities, inner structures, morphologies and combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mai L, Tian X, Xu X, Chang L, Xu L (2014) Nanowire electrodes for electrochemical energy storage devices. Chem Rev 114(23):11828–11862. https://doi.org/10.1021/cr500177a

    Article  CAS  PubMed  Google Scholar 

  2. Kempa TJ, Day RW, Kim SK, Park HG, Lieber CM (2013) Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells. Energ Environ Sci 6(3):719–733

    Article  CAS  Google Scholar 

  3. Dasgupta NP, Sun J, Liu C, Brittman S, Andrews SC, Lim J, Gao H, Yan R, Yang P (2014) Semiconductor nanowires-synthesis, characterization, and applications. Adv Mater 26(14):2137–2184. https://doi.org/10.1002/adma.201305929

    Article  CAS  PubMed  Google Scholar 

  4. Zhang G, Xiao X, Li B, Gu P, Xue H, Pang H (2017) Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J Mater Chem A 5(18):8155–8186. https://doi.org/10.1039/c7ta02454a

    Article  CAS  Google Scholar 

  5. Niu C, Meng J, Wang X, Han C, Yan M, Zhao K, Xu X, Ren W, Zhao Y, Xu L, Zhang Q, Zhao D, Mai L (2015) General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat Commun 6:7402

    Article  Google Scholar 

  6. Anderson BD, Tracy JB (2014) Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. Nanoscale 6(21):12195–12216. https://doi.org/10.1039/c4nr02025a

    Article  CAS  PubMed  Google Scholar 

  7. Huang M, Zhang Y, Li F, Wang Z, Alamusi HuN, Wen Z, Liu Q (2014) Merging of Kirkendall growth and Ostwald ripening: CuO@MnO2 core–shell architectures for asymmetric supercapacitors. Sci Rep 4:4518. https://doi.org/10.1038/srep04518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu L, Guan B, Xiao W, Lou XW (2015) Formation of yolk–shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv Energy Mater 5(21):1500981. https://doi.org/10.1002/aenm.201500981

    Article  CAS  Google Scholar 

  9. Yu L, Wu HB, Lou XW (2017) Self-templated formation of hollow structures for electrochemical energy applications. Accounts Chem Res 50(2):293–301. https://doi.org/10.1021/acs.accounts.6b00480

    Article  CAS  Google Scholar 

  10. Liu Y, Elzatahry AA, Luo W, Lan K, Zhang P, Fan J, Wei Y, Wang C, Deng Y, Zheng G, Zhang F, Tang Y, Mai L, Zhao D (2016) Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy 25:80–90. https://doi.org/10.1016/j.nanoen.2016.04.028

    Article  CAS  Google Scholar 

  11. Lei D, Benson J, Magasinski A, Berdichevsky G, Yushin G (2017) Transformation of bulk alloys to oxide nanowires. Science 355:267–271

    Article  CAS  Google Scholar 

  12. Cho W, Lee YH, Lee HJ, Oh M (2011) Multi ball-in-ball hybrid metal oxides. Adv Mater 23(15):1720–1723

    Article  CAS  Google Scholar 

  13. Shen L, Yu L, Yu X, Zhang X, Lou XW (2015) Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew Chem Int Edit 54(6):1868–1872

    Article  CAS  Google Scholar 

  14. Kim H, Yang S, Rao SR, Narayanan S, Kapustin EA, Furukawa H, Umans AS, Yaghi OM, Wang EN (2017) Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356(6336):430

    Article  CAS  Google Scholar 

  15. Cadiau A, Belmabkhout Y, Adil K, Bhatt PM, Pillai RS, Shkurenko A, Martineaucorcos C, Maurin G, Eddaoudi M (2017) Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science 356(6339):731

    Article  CAS  Google Scholar 

  16. Isfahani AP, Ghalei B, Sivaniah E, Hirao H, Kusuda H, Doitomi K, Wakimoto K, Sakurai K, Song Q, Furukawa S (2017) Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat Energy 2:17086

    Article  Google Scholar 

  17. Liao PQ, Huang NY, Zhang WX, Zhang JP, Chen XM (2017) Controlling guest conformation for efficient purification of butadiene. Science 356(6343):1193

    Article  CAS  Google Scholar 

  18. Knebel A, Geppert B, Volgmann K, Kolokolov DI, Stepanov AG, Twiefel J, Heitjans P, Volkmer D, Caro J (2017) Defibrillation of soft porous metal-organic frameworks with electric fields. Science 358(6361):347–351

    Article  CAS  Google Scholar 

  19. Jagadeesh RV, Murugesan K, Alshammari AS, Neumann H, Pohl MM, Radnik J, Beller M (2017) MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science 358(6361):326

    Article  CAS  Google Scholar 

  20. Zheng S, Li X, Yan B, Hu Q, Xu Y, Xiao X, Xue H, Pang H (2017) Transition-metal (Fe Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater 7(18):1602733

    Article  Google Scholar 

  21. Yu J, Mu C, Yan B, Qin X, Shen C, Xue H, Pang H (2017) Nanoparticle/MOF composites: preparations and applications. Mater Horiz 4(4):557

    Article  CAS  Google Scholar 

  22. Zhang L, Wu HB, Lou XW (2013) Metal-organic-frameworks-derived general formation of hollow structures with high complexity. J Am Chem Soc 135(29):10664–10672

    Article  CAS  Google Scholar 

  23. Ju P, Jiang L, Lu TB (2013) An unprecedented dynamic porous metal-organic framework assembled from fivefold interlocked closed nanotubes with selective gas adsorption behaviors. Chem Commun 49(18):1820–1822

    Article  CAS  Google Scholar 

  24. Hu L, Huang Y, Zhang F, Chen Q (2013) CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 5(10):4186

    Article  CAS  Google Scholar 

  25. Huang G, Zhang F, Zhang L, Du X, Wang J, Wang L (2014) Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J Mater Chem A 2(21):8048–8053. https://doi.org/10.1039/c4ta00200h

    Article  CAS  Google Scholar 

  26. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304(5671):711–714

    Article  CAS  Google Scholar 

  27. Li Y, Fu H, Zhang Y, Wang Z, Li X (2014) Kirkendall effect induced one-step fabrication of tubular Ag/MnOx nanocomposites for supercapacitor application. J Phys Chem C 118(13):6604–6611. https://doi.org/10.1021/jp412187n

    Article  CAS  Google Scholar 

  28. Ren W, Zheng Z, Luo Y, Chen W, Niu C, Zhao K, Yan M, Zhang L, Meng J, Mai L (2015) An electrospun hierarchical LiV3O8 nanowire-in-network for high-rate and long-life lithium batteries. J Mater Chem A 3(39):19850–19856. https://doi.org/10.1039/c5ta04643b

    Article  CAS  Google Scholar 

  29. Wang H, Yuan S, Ma D, Zhang X, Yan J (2015) Electrospun materials for rechargeable batteries: from structure evolution to electrochemical performance. Energ Environ Sci 8(6):1660–1681

    Article  CAS  Google Scholar 

  30. Peng S, Li L, Hu Y, Srinivasan M, Cheng F, Chen J, Ramakrishna S (2015) Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 9(2):1945

    Google Scholar 

  31. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750

    Article  CAS  Google Scholar 

  32. Shi W, Song S, Zhang H (2013) Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem Soc Rev 42(13):5714

    Article  CAS  Google Scholar 

  33. Gao L, Wang X, Xie Z, Song W, Wang L, Wu X, Qu F, Chen D, Shen G (2013) High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J Mater Chem A 1(24):7167–7173

    Article  CAS  Google Scholar 

  34. Goriparti S, Miele E, Prato M, Scarpellini A, Marras S, Monaco S, Toma A, Messina GC, Alabastri A, De Angelis F, Manna L, Capiglia C, Zaccaria RP (2015) Direct synthesis of carbon-doped TiO2-bronze nanowires as anode materials for high performance lithium-ion batteries. ACS Appl Mater Inter 7(45):25139–25146. https://doi.org/10.1021/acsami.5b06426

    Article  CAS  Google Scholar 

  35. Chen J, Song W, Hou H, Zhang Y, Jing M, Jia X, Ji X (2015) Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv Funct Mater 25(43):6793–6801. https://doi.org/10.1002/adfm.201502978

    Article  CAS  Google Scholar 

  36. Chen X, Liu L, Huang F (2015) Black titanium dioxide (TiO2) nanomaterials. Chem Soc Rev 44(7):1861

    Google Scholar 

  37. Ren G, Hoque MNF, Pan X, Warzywoda J, Fan Z (2015) Vertically aligned VO2(B) nanobelt forest and its three-dimensional structure on oriented graphene for energy storage. J Mater Chem A 3(20):10787–10794. https://doi.org/10.1039/c5ta01900a

    Article  CAS  Google Scholar 

  38. Zhang Q, Wang J, Dong J, Ding F, Li X, Zhang B, Yang S, Zhang K (2015) Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with superior lithium storage properties. Nano Energy 13:77–91. https://doi.org/10.1016/j.nanoen.2015.01.029

    Article  CAS  Google Scholar 

  39. Ma J, Wang K, Zhan M (2015) Growth mechanism and electrical and magnetic properties of Ag–Fe(3)O(4) core–shell nanowires. ACS Appl Mater Inter 7(29):16027–16039. https://doi.org/10.1021/acsami.5b04342

    Article  CAS  Google Scholar 

  40. Ma FX, Yu L, Xu CY, Lou XW (2016) Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energ Environ Sci 9(3):862–866. https://doi.org/10.1039/c5ee03772g

    Article  CAS  Google Scholar 

  41. Ahmed B, Shahid M, Nagaraju DH, Anjum DH, Hedhili MN, Alshareef HN (2015) Surface passivation of MoO3 nanorods by atomic layer deposition toward high rate durable li ion battery anodes. ACS Appl Mater Inter 7(24):13154–13163. https://doi.org/10.1021/acsami.5b03395

    Article  CAS  Google Scholar 

  42. Liu J, Zhang L, Wu HB, Lin J, Shen Z, Lou XW (2014) High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energ Environ Sci 7(11):3709–3719

    Article  CAS  Google Scholar 

  43. Liu J, Chen M, Zhang L, Jiang J, Yan J, Huang Y, Lin J, Fan HJ, Shen ZX (2014) A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film. Nano Lett 14(12):7180–7187

    Article  CAS  Google Scholar 

  44. Guan C, Liu J, Wang Y, Mao L, Fan Z, Shen Z, Zhang H, Wang J (2015) Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9:5198

    Article  CAS  Google Scholar 

  45. Ji H, Zhang L, Pettes MT, Li H, Chen S, Shi L, Piner R, Ruoff RS (2012) Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. Nano Lett 12(5):2446

    Article  CAS  Google Scholar 

  46. Luo J, Liu J, Zeng Z, Ng CF, Ma L, Zhang H, Lin J, Shen Z, Fan HJ (2013) Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett 13(12):6136

    Article  CAS  Google Scholar 

  47. Yu X, Lu B, Xu Z (2014) Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO(4)-3D graphene hybrid electrodes. Adv Mater 26(7):1044–1051

    Article  CAS  Google Scholar 

  48. Chao D, Xia X, Liu J, Fan Z, Ng CF, Lin J, Zhang H, Shen ZX, Fan HJ (2014) A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv Mater 26(33):5794–5800. https://doi.org/10.1002/adma.201400719

    Article  CAS  PubMed  Google Scholar 

  49. Klamchuen A, Suzuki M, Nagashima K, Yoshida H, Kanai M, Zhuge F, He Y, Meng G, Kai S, Takeda S, Kawai T, Yanagida T (2015) Rational concept for designing vapor-liquid-solid growth of single crystalline metal oxide nanowires. Nano Lett 15(10):6406–6412. https://doi.org/10.1021/acs.nanolett.5b01604

    Article  CAS  PubMed  Google Scholar 

  50. Duay J, Sherrill SA, Gui Z, Gillette E, Lee SB (2013) Self-limiting electrodeposition of hierarchical MnO2 and M(OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties. ACS Nano 7(2):1200

    Article  CAS  Google Scholar 

  51. Pendashteh A, Moosavifard SE, Rahmanifar MS, Wang Y, ElKady MF, Kaner RB, Mousavi MF (2015) Highly ordered mesoporous CuCo2O4 nanowires, a promising solution for high-performance supercapacitors. Chem Mater 27(11):3919–3926. https://doi.org/10.1021/acs.chemmater.5b00706

    Article  CAS  Google Scholar 

  52. Sharma S, Pal N, Chowdhury PK, Sen S, Ganguli AK (2012) Understanding growth kinetics of nanorods in microemulsion: a combined fluorescence correlation spectroscopy, dynamic light scattering, and electron microscopy study. J Am Ceram Soc 134(48):19677–19684

    CAS  Google Scholar 

  53. Sharma S, Yadav N, Chowdhury PK, Ganguli AK (2015) Controlling the microstructure of reverse micelles and their templating effect on shaping nanostructures. J Phys Chem B 119(34):11295–11306. https://doi.org/10.1021/acs.jpcb.5b03063

    Article  CAS  PubMed  Google Scholar 

  54. Tartaj P, Amarilla JM, Vazquez-Santos MB (2015) Surfactant-free vanadium oxides from reverse micelles and organic oxidants: solution processable nanoribbons with potential applicability as battery insertion electrodes assembled in different configurations. Langmuir ACS J Surf Colloids 31(45):12489–12496. https://doi.org/10.1021/acs.langmuir.5b02856

    Article  CAS  Google Scholar 

  55. Pang X, He Y, Jung J, Lin Z (2016) 1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science 353(6305):1268

    Article  CAS  Google Scholar 

  56. Hashimoto H, Kobayashi G, Sakuma R, Fujii T, Hayashi N, Suzuki T, Kanno R, Takano M, Takada J (2014) Bacterial nanometric amorphous Fe-based oxide: a potential lithium-ion battery anode material. ACS Appl Mater Inter 6(8):5374–5378. https://doi.org/10.1021/am500905y

    Article  CAS  Google Scholar 

  57. Oh D, Qi J, Lu YC, Zhang Y, Shao-Horn Y, Belcher AM (2013) Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries. Nat Commun 4:2756. https://doi.org/10.1038/ncomms3756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gerasopoulos K, Pomerantseva E, Mccarthy M, Brown A, Wang C, Culver J, Ghodssi R (2012) Hierarchical three-dimensional microbattery electrodes combining bottom-up self-assembly and top-down micromachining. ACS Nano 6(7):6422

    Article  CAS  Google Scholar 

  59. Shim HW, Jin YH, Seo SD, Lee SH, Kim DW (2011) Highly reversible lithium storage in bacillus subtilis-directed porous Co3O4 nanostructures. ACS Nano 5:443

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pang, H., Zhang, G., Xiao, X., Xue, H. (2020). Synthetic Strategies for One-Dimensional/One-Dimensional Analogue Nanomaterials. In: One-dimensional Transition Metal Oxides and Their Analogues for Batteries. SpringerBriefs in Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-5066-9_1

Download citation

Publish with us

Policies and ethics