Skip to main content

Introduction

  • Chapter
  • First Online:
Structural Health Monitoring
  • 510 Accesses

Abstract

Structures are prone to degradation and damage over their service life. Damage detection is one of the main aspects of structural engineering both for safety reasons and because of economic benefits that can result from the prevention of failure. Many nondestructive testing methods for structural health monitoring have been proposed over the past few decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pawar, P. M., & Ganguli, R. (2003). Genetic fuzzy system for damage detection in beams and helicopter rotor blades. Computer Methods Applied Mechanics and Engineering, 192(16–18), 2031–2057.

    MATH  Google Scholar 

  2. Montalvao, D., Maia, N. M. M., & Ribeiro, A. M. R. (2006). A review of vibration-based structural health monitoring with special emphasis on composite materials. The Shock and Vibration Digest, 38(4), 295–324.

    Google Scholar 

  3. Doebling, S. W., Farrar, C. R., & Prime, M. B. (1998). A summary review of vibration based damage identification methods. Shock and Vibration Digest, 30(3), 91–105.

    Google Scholar 

  4. Salawu, O. S. (1997). Detection of structural damage through changes in frequency: A review. Engineering Structures, 19(9), 718–723.

    Google Scholar 

  5. O’Hagan, A., & Oakley, J. E. (2004). Probability is perfect, but we can’t elicit it perfectly. Reliability Engineering and System Safety, 85(1–3), 239–248.

    Google Scholar 

  6. Xia, Y., et al. (2002). Damage identification of structures with uncertain frequency and mode shape data. Earthquake Engineering and Structural Dynamics, 31(5), 1053–66.

    Google Scholar 

  7. Cheng, J., & Xiao, R. C. (2007). Probabilistic free vibration analysis of beams subjected to axial loads. Advances in Engineering Software, 38(1), 31–38.

    Google Scholar 

  8. Melchers, R. E. (1999). Structural reliability analysis and prediction. New York: Wiley.

    Google Scholar 

  9. Haldar, A., & Mahadevan, S. (2000). Reliability assessment using stochastic finite element analysis. New York: Wiley.

    Google Scholar 

  10. Hofer, E., Kloos, M., Krzykacz-Hausmanna, B., Peschkea, J., & Woltereckb, M. (2002). An approximate epistemic uncertainty analysis approach in the presence of epistemic and aleatory uncertainties. Reliability Engineering and System Safety, 77(3), 229–238.

    Google Scholar 

  11. Liu, P. L. (1995). Identification and damage detection of trusses using modal data. Journal of Structural Engineering, American Society of Civil Engineers, 121(4), 599–608.

    Google Scholar 

  12. Papadopoulos, L., & Garcia, E. (1998). Structural damage identification: a probabilistic approach. American Institute of Aeronautics and Astronautics Journal, 36(11), 2137–2145.

    Google Scholar 

  13. Ganguli, R. (2001). A fuzzy logic system for ground based structural health monitoring of a helicopter rotor using modal data. Journal of Intelligent Material Systems and Structures, 12(6), 397–407.

    Google Scholar 

  14. Pawar, P. M., & Ganguli, R. (2007). Genetic fuzzy system for online structural health monitoring of composite helicopter rotor blades. Mechanical Systems and Signal Processing, 21(5), 2212–2236.

    Google Scholar 

  15. Sawyer, J. P., & Rao, S. S. (2000). Structural damage detection and identification using fuzzy logic. AIAA Journal, 38(12), 2328–2335.

    Google Scholar 

  16. Hoon, S. (2002). Statistical damage classification under changing environmental and operational conditions. Journal of Intelligent Material Systems and Structures, 13(9), 561–574.

    Google Scholar 

  17. Chang, C. C., Chang, T. Y. P., Xu, Y. G., & Wang, M. C. (2000). Structural damage detection using an iterative neural network. Journal of Intelligent Material Systems and Structures, 11(1), 32–42.

    Google Scholar 

  18. Collins, J. D., Hart, G. C., Hasselman, T. K., & Kennedt, K. (1974). System identification of structures. American Institute of Aeronautics and Astronautics Journal, 12(2), 185–190.

    Google Scholar 

  19. Chen, S. H., Guo, K. J., & Chen, Y. D. (2004). A method for estimating upper and lower bounds of eigenvalues of closed-loop systems with uncertain parameters. Journal of Sound and Vibration, 276(3–5), 527–539.

    MathSciNet  MATH  Google Scholar 

  20. Gao, W. (2007). Natural frequency and mode shape analysis of structures with uncertainty. Mechanical Systems and Signal Processing, 21(1), 24–39.

    Article  Google Scholar 

  21. Yong, X., & Hong, H. (2003). Statistical damage identification of structures with frequency changes. Journal of Sound and Vibration, 263(4), 853–870.

    Article  Google Scholar 

  22. Bakhary, N., Hao, H., & Deeks, A. J. (2007). Damage detection using artificial neural network with consideration of uncertainties. Engineering Structures, 29(11), 2806–2815.

    Article  Google Scholar 

  23. Zadeh, L. (1996). Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems, 4(2), 103–111.

    Article  Google Scholar 

  24. Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are uniform approximators. Neural Networks, 2(3), 359–366.

    Article  MATH  Google Scholar 

  25. Hong, X. L., & Chen, P. C. L. (2000). The equivalence between fuzzy logic systems and feedforward neural networks. IEEE Transactions on Neural Networks, 11(2), 356–365.

    Article  Google Scholar 

  26. Silva, S. D., Dias, M., Lopes, V., & Brennan, M. J. (2008). Structural damage detection by fuzzy clustering. Mechanical Systems and Signal Processing, 22(7), 1636–1649.

    Article  Google Scholar 

  27. Rodriguez, P. V. J., Negrea, M., & Arkkio, A. (2007). A Simplified scheme for induction motor condition monitoring. Mechanical Systems and Signal Processing, 22(5), 1216–1236.

    Google Scholar 

  28. Kong, F., & Chen, R. (2004). A combined method for triplex pump fault diagnosis based on wavelet transform. Fuzzy Logic and Neuro-networks, Mechanical Systems and Signal Processing, 18(1), 161–168.

    Google Scholar 

  29. Gowd, P. B., Jayashree, K., & Hegde, M. N. (2018). Comparison of artificial neural networks and fuzzy logic approaches for crack detection in a beam like structure. International Journal of Artificial Intelligence and Applications, 9, 35–51.

    Google Scholar 

  30. Behera, S. K., Parhi, D. R., & Das, H. C. (2018). Numerical. Experimental and Fuzzy Logic Applications for Investigation of Crack Location and Crack Depth Estimation in a Free-Free Aluminum Beam, Vibrations in Physical Systems, 29, 1–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Ganguli .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganguli, R. (2020). Introduction. In: Structural Health Monitoring. Springer, Singapore. https://doi.org/10.1007/978-981-15-4988-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4988-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4987-8

  • Online ISBN: 978-981-15-4988-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics