Skip to main content

Immersive Virtual Reality for Learning Experiences

  • Chapter
  • First Online:
Radical Solutions and eLearning

Abstract

The emergence of immersive virtual reality systems, which offer virtual environments of high interactivity for the user, become attractive to be incorporated into the classroom because they generate motivation in the students and facilitate the tasks that lead to a better representation of spatial knowledge. Virtual worlds are an excellent means of experimental learning, especially to replace real contexts that are impossible to use due to time or space restrictions, or that are unsafe for a student to address. Neuroeducation experts believe that virtual reality technology is promising for its ability to create 3D scenes that allow students to generate vivid and emotional experiences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo, D., Vote, E., Laidlaw, D. H., & Joukowsky, M. S. (2001). Archaeological data visualization in VR: Analysis of lamp finds at the great temple of Petra, a case study. In T. Ertl, K. I. Joy, & A. Varshney (Eds.), IEEE visualization, VIS’01 (pp. 493–496). California: IEEE Computer Society.

    Google Scholar 

  • Berns, A., Mota, J. M., Ruiz-Rube, I., & Dodero, J. M. (2018). Exploring the potential of a 360° video application for foreign language learning. In F. J. García-Peñalvo (Ed.), International Conference on Technological Ecosystems for Enhancing Multiculturality, TEEM’18 (pp. 776–780). Salamanca: ACM.

    Google Scholar 

  • Boos, K., Chu, D., & Cuervo, E. (2016). FlashBack: Immersive virtual reality on mobile devices via rendering memoization. In R. K. Balan, A. Misra, S. Agarwal, & C. Mascolo (Eds.), International Conference on Mobile Systems, Applications, and Services, MobiSys’16 (pp. 291–304). Singapore: ACM.

    Chapter  Google Scholar 

  • Bowman, D., & McMahan, R. (2007). Virtual reality: How much immersion is enough? EEE Computer, 40(7), 36–43.

    Google Scholar 

  • Bricken, M. (1991). Virtual reality learning environments: Potentials and challenges. ACM SIGGRAPH Computer Graphics, 25(3), 178–184.

    Article  Google Scholar 

  • Bryson, S. (1996). Virtual reality in scientific visualization. Communications of the ACM, 39(5), 62–71.

    Article  Google Scholar 

  • Cabral, M., Morimoto, C., & Zuffo, M. (2005). On the usability of gesture interfaces in virtual reality environments. In M. C. C. Baranauskas & O. Mayora-Ibarra (Eds.), Latin American Conference on Human-Computer Interaction, CLIHC’05 (pp. 100–108). Mexico: ACM.

    Google Scholar 

  • Cliburn, D. (2004). Virtual reality for small colleges. The Journal of Computing Sciences in Colleges, 19(4), 28–38.

    Google Scholar 

  • Chua, P. T., Crivella, R., Daly, B., Ning Hu, Schaaf, R., Ventura, D., … Pausch, R. (2003). Training for physical tasks in virtual environments: Tai Chi. In Proceedings of IEEE Virtual Reality, IEEEVR’03 (pp. 87–95). California: IEEE Computer Society.

    Google Scholar 

  • Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., & Hart, J. C. (1992). The CAVE: Audio visual experience automatic virtual environment. Communications of the ACM, 35(6), 64–72.

    Article  Google Scholar 

  • Dalgarno, B., & Lee, M. (2009). What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, 41(1), 10–32.

    Article  Google Scholar 

  • Dede, C., Salzman, M. C., & Loftin, R. (1996). ScienceSpace: Virtual realities for learning complex and abstract scientific concepts. In Proceedings of the Virtual Reality Annual International Symposium (pp. 246–253). California: IEEE Computer Society.

    Google Scholar 

  • Gaitatzes, A., Christopoulos, D., & Roussou, M. (2001). Reviving the past: cultural heritage meets virtual reality. In D. B. Arnold, A. Chalmers, & D. W. Fellner (Eds.), Virtual Reality, Archeology, and Cultural Heritage, VAST’01 (pp. 103–110). Greece: ACM.

    Google Scholar 

  • Getchell, K., Miller, A., Nicoll, R., Sweetman, R., & Allison, C. (2010). Games methodologies and immersive environments for virtual fieldwork. IEEE Transactions on Learning Technologies, 3(4), 281–293.

    Article  Google Scholar 

  • Harrington, M. (2011). Empirical evidence of priming, transfer, reinforcement, and learning in the real and virtual trillium trails. IEEE Transactions on Learning Technologies, 4(2), 175–186.

    Article  Google Scholar 

  • Kelling, C., Kauhanen, O., Väätäjä, H., Karhu, J., Turunen, M., & Lindqvist, V. (2018). Implications of audio and narration in the user experience design of virtual reality. In Proceedings of the 22nd International Academic Mindtrek Conference, MindTrek’18 (pp. 258–261). Finland: ACM.

    Google Scholar 

  • Knibbe, J., Schjerlund, J., Petraeus, M., & Hornbæk, K. (2018). The Dream is Collapsing. In R. L. Mandryk, M. Hancock, M. Perry, & A. L. Cox (Eds.), Conference on Human Factors in Computing Systems, CHI’18 (pp. 483–495). Canada: ACM.

    Google Scholar 

  • Kuan, W., & San, C. (2003). Constructivist physics learning in an immersive, multi-user hot air balloon simulation program (iHABS). In A. P. Rockwood (Ed.), Conference on Computer Graphics and Interactive Techniques, SIGGRAPH Educators Program. California: ACM.

    Google Scholar 

  • Lee, E., Wong, K., & Fung, C. (2009). Learning effectiveness in a desktop virtual reality-based learning environment. In S. Kong (Ed.), International Conference on Computers in Education, ICCE´09 (pp. 832–839). Hong Kong: Asia-Pacific Society for Computers. in Education.

    Google Scholar 

  • Oberdörfer, S., Heidrich, D., & Latoschik, M. E. (2019). Usability of gamified knowledge learning in VR and desktop-3D. In S. A. Brewster, G. Fitzpatrick, A. L. Cox, & V. Kostakos (Eds.), Conference on Human Factors in Computing Systems, CHI’19 (pp. 175–188). Glasgow: ACM.

    Google Scholar 

  • Ortiz, J., Sánchez, J., Velasco, P., Sánchez, C., Quevedo, W., … Andaluz, V. (2017). Teaching-Learning process through VR applied to automotive engineering. In Proceedings of the 9th International Conference on Education Technology and Computers, ICETC’17 (pp. 36–40). Barcelona: ACM.

    Google Scholar 

  • Patel, K., Bailenson, J. N., Hack-Jung, S., Diankov, R., & Bajcsy, R. (2006). The effects of fully immersive virtual reality on the learning of physical tasks. In C. Campanella & M. Lombard (Eds.), International Workshop on Presence, PRESENCE 2006 (pp. 129–138). Cleveland: Cleveland State University.

    Google Scholar 

  • Pausch, R., Proffitt, D., & Williams, G. (1997). Quantifying immersion in virtual reality. In G. S. Owen, T. Whitted, & B. Mones-Hattal (Eds.), Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’97 (pp. 13–18). California: ACM.

    Google Scholar 

  • Robertson, G., Czerwinski, M., & van Dantzich, M. (1997). Immersion in desktop virtual reality. In G. G. Robertson & C. Schmandt (Eds.), Symposium on User Interface Software and Technology, UIST’97 (pp. 11–19). Canadá: ACM.

    Google Scholar 

  • Slater, M., Linakis, V., Usoh, M., & Kooper, R. (1996). Immersion, presence and performance in virtual environments: An experiment with tri-dimensional chess. In M. Green, K. M. Fairchild, & M. Zyda (Eds.), Symposium on Virtual Reality Software and Technology, VRST’96 (pp. 163–172). Hong Kong: ACM.

    Chapter  Google Scholar 

  • Slater, M., Usoh, M., & Steed, A. (1995). Taking steps: The influence of a walking technique on presence in virtual reality. ACM Transactions on Computer-Human Interaction, 2(3), 201–219.

    Article  Google Scholar 

  • Wiederhold, B. K., & Rizzo, A. (2005). Virtual reality and applied psychophysiology. Applied Psychophysiology and Biofeedback, 30(3), 183–185.

    Article  Google Scholar 

  • Wojciechowski, R., Walczak, K., White, M., & Cellary, W. (2004). Building virtual and augmented reality museum exhibitions. In D. P. Brutzman, L. Chittaro & R. Puk (Eds.), International Conference on 3D Web Technology, Web3D’04 (pp. 135–144). California:ACM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Irene Gomez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomez, L.I. (2020). Immersive Virtual Reality for Learning Experiences. In: Burgos, D. (eds) Radical Solutions and eLearning. Lecture Notes in Educational Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4952-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4952-6_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4951-9

  • Online ISBN: 978-981-15-4952-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics