Skip to main content

Gravity Compensation Using Low-Cost Automation for Robot Control

  • Conference paper
  • First Online:
Developments and Advances in Defense and Security (MICRADS 2020)

Abstract

Recently, open source-based robotics applications have been developed, where precision in movement control is considered the main objective when following a trajectory based on direct or reverse kinematics; however, due to different disturbances, small errors can interfere with the execution of orders sent for the individual control of the manipulator’s joints. To improve the precision in the movement of the final effector within the Cartesian space, this research proposes a method based on gravitational compensation, canceling the dynamic analysis of the robotic arm. The control algorithm is a ROS-based system that integrates concepts of low-cost automation; this algorithm resides inside a low-cost controller as Raspberry Pi that is used for rapid exchange of information between the Kuka youBot robotic arm and a graphical interface that allows an interaction between the user and the system components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binazadeh, T., Yousefi, M.: Designing a cascade-control structure using fractional-order controllers: time-delay fractional-order proportional-derivative controller and fractional-order sliding-mode controller. J. Eng. Mech. 143(7), 04017037 (2017). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001234

    Article  Google Scholar 

  2. de Gea Fernández, J., Mronga, D., Günther, M., Knobloch, T., Wirkus, M., Schröer, M., Trampler, M., Stiene, S., Kirchner, E., Bargsten, V., Bänziger, T., Teiwes, J., Krüger, T., Kirchner, F.: Multimodal sensor-based whole-body control for human-robot collaboration in industrial settings. Robot. Auton. Syst. 94, 102–119 (2017). https://doi.org/10.1016/j.robot.2017.04.007, http://www.sciencedirect.com/science/article/pii/S0921889016305127

  3. Di Napoli, G., Filippeschi, A., Tanzini, M., Avizzano, C.A.: A novel control strategy for youBot arm. In: IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society. pp. 482–487 (2016). https://doi.org/10.1109/IECON.2016.7793658

  4. Garcia, C.A., Franklin, S.L., Mariño, C., Villalba, W.R., Garcia, M.V.: Design of flexible cyber-physical production systems architecture for industrial robot control. In: 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM). pp. 1–6 (2018). https://doi.org/10.1109/ETCM.2018.8580338

  5. Garcia, C.A., Lanas, D., Edison, A.M., Altamirano, S., Garcia, M.V.: An approach of cyber-physical production systems architecture for robot control. In: IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society. pp. 2847–2852 (2018). https://doi.org/10.1109/IECON.2018.8591286

  6. Hernández, V., Santibáñez, V., Carrillo, R., Molina, J., López, J.: Control pd de robots: Dinámica de actuadores y nueva sintonía. Revista Iberoamericana de Automática e Informática Industrial RIAI 5(4), 62–68 (2008). https://doi.org/10.1016/S1697-7912(08)70178-X, http://www.sciencedirect.com/science/article/pii/S169779120870178X

  7. Koubâa, A.: Robot Operating System (ROS). Springer (2017). https://doi.org/10.1007/978-3-319-26054-9

  8. Peidró, A., Reinoso, Ó., Gil, A., Marín, J.M., Payá, L.: Análisis de estabilidad de singularidades aisladas en robots paralelos mediante desarrollos de taylor de segundo orden (2017)

    Google Scholar 

  9. Wang, L., Törngren, M., Onori, M.: Current status and advancement of cyber-physical systems in manufacturing. J. Manufact. Syst. 37, 517–527 (2015). https://doi.org/10.1016/j.jmsy.2015.04.008, http://www.sciencedirect.com/science/article/pii/S0278612515000400

  10. Yu, C., Li, Z., Liu, H.: Research on gravity compensation of robot arm based on model learning*. In: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 635–641 (2019). https://doi.org/10.1109/AIM.2019.8868673

  11. Zhang, B., Gao, S.: Kuka youBot arm path planning based on gravity. In: 2018 International Conference on Mechanical, Electrical, Electronic Engineering & Science (MEEES 2018). Atlantis Press (2018/05). https://doi.org/10.2991/meees-18.2018.75

Download references

Acknowledgements

This work was financed by Universidad Tecnica de Ambato (UTA) and their Research and Development Department (DIDE) under project CONIN-P-256-2019

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo V. Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caiza, G., Alvarez-Montenegro, D., Escobar-Naranjo, J., Garcia, C.A., Garcia, M.V. (2020). Gravity Compensation Using Low-Cost Automation for Robot Control. In: Rocha, Á., Paredes-Calderón, M., Guarda, T. (eds) Developments and Advances in Defense and Security. MICRADS 2020. Smart Innovation, Systems and Technologies, vol 181. Springer, Singapore. https://doi.org/10.1007/978-981-15-4875-8_18

Download citation

Publish with us

Policies and ethics