Skip to main content

Analysis on High-Performance Full Adders

  • Conference paper
  • First Online:
Next Generation Information Processing System

Abstract

This paper contains the performance analysis of various available designs of full adders. It is observed that the full adder is designed for 1 bit, and later it is extended for 32 bits also. The circuit is designed by using 180 nm technology at 1.8 V supply and technology using 90 nm at 1.2 V supply using Cadence Virtuoso tools. High speed, low consumption of power, better power–delay product (PDP), layout area, better propagation delay, these are the performance parameters that are compared for various full adders. The circuit performs better in case of improvement of the full adder circuit in terms of parameters like speed and power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, P., Raghuvanshi, D., Gupta, M.: A low-power high-speed 16t 1-bit hybrid full adder. In: 2017 International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE), pp. 348–352. IEEE (2017)

    Google Scholar 

  2. Aranda, M.L., Báez, R., Diaz, O.G.: Hybrid adders for high-speed arithmetic circuits: a comparison. In: 2010 7th International Conference on Electrical Engineering Computing Science and Automatic Control, pp. 546–549. IEEE (2010)

    Google Scholar 

  3. Bhattacharyya, P., Kundu, B., Ghosh, S., Kumar, V., Dandapat, A.: Performance analysis of a low-power high-speed hybrid 1-bit full adder circuit. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(10), 2001–2008 (2014)

    Google Scholar 

  4. Goel, S., Gollamudi, S., Kumar, A., Bayoumi, M.: On the design of low-energy hybrid cmos 1-bit full adder cells. In: The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS’04., vol. 2, pp. II–II. IEEE (2004)

    Google Scholar 

  5. Hernandez, M.A., Aranda, M.L.: A low-power bootstrapped cmos full adder. In: 2005 2nd International Conference on Electrical and Electronics Engineering, pp. 243–246. IEEE (2005)

    Google Scholar 

  6. Janwadkar, S., Das, S.: Design and performance evaluation of hybrid full adder for extensive PDP reduction. In: 2018 3rd International Conference for Convergence in Technology (I2CT), pp. 1–6. IEEE (2018)

    Google Scholar 

  7. Kadu, C.P., Sharma, M.: Area-efficient high-speed hybrid 1-bit full adder circuit using modified XNOR gate. In: 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC), pp. 1–5. IEEE (2017)

    Google Scholar 

  8. Katragadda, R.: Analysis of low power methods in 14t full adder. In: 2015 2nd International Conference on Electronics and Communication Systems (ICECS), pp. 1210–1215. IEEE (2015)

    Google Scholar 

  9. Khatibzadeh, A.A., Raahemifar, K.: A 14-transistor low power high-speed full adder cell. In: CCECE 2003-Canadian Conference on Electrical and Computer Engineering. Toward a Caring and Humane Technology (Cat. No. 03CH37436), vol. 1, pp. 163–166. IEEE (2003)

    Google Scholar 

  10. Kumar, M., Baghel, R.: Ultra low-power high-speed single-bit hybrid full adder circuit. In: 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6. IEEE (2017)

    Google Scholar 

  11. Lee, S.J., Ruslan, S.H.: A 4-bit cmos full adder of 1-bit hybrid 13t adder with a new sum circuit. In: 2016 IEEE Student Conference on Research and Development (SCOReD), pp. 1–5. IEEE (2016)

    Google Scholar 

  12. Mewada, M., Zaveri, M.: A low-power high-speed hybrid full adder. In: 2016 20th International Symposium on VLSI Design and Test (VDAT), pp. 1–2. IEEE (2016)

    Google Scholar 

  13. Niranjan, N.K., Singh, R.B., Rizvi, N.Z.: Parametric analysis of a hybrid 1-bit full adder in UDSM and CNTFET technology. In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 4267–4272. IEEE (2016)

    Google Scholar 

  14. Shams, A.M., Darwish, T.K., Bayoumi, M.A.: Performance analysis of low-power 1-bit cmos full adder cells. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 10(1), 20–29 (2002)

    Google Scholar 

  15. Tung, C.K., Hung, Y.C., Shieh, S.H., Huang, G.S.: A low-power high-speed hybrid cmos full adder for embedded system. In: 2007 IEEE Design and Diagnostics of Electronic Circuits and Systems, pp. 1–4. IEEE (2007)

    Google Scholar 

  16. Wey, I.C., Huang, C.H., Chow, H.C.: A new low-voltage cmos 1-bit full adder for high performance applications. In: Proceedings. IEEE Asia-Pacific Conference on ASIC, pp. 21–24. IEEE (2002)

    Google Scholar 

  17. Zandkarimi, G., Navi, K., Mokari, H.: A new low power full adder cell in CMOS inverter. In: 2010 International Conference on Intelligent and Advanced Systems, pp. 1–5. IEEE (2010)

    Google Scholar 

  18. Zhang, M., Gu, J., Chang, C.H.: A novel hybrid pass logic with static CMOS output drive full-adder cell. In: Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS’03., vol. 5, pp. V–V. IEEE (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bujjibabu Penumuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kavya, K.V.S.S.S.S., Penumuchi, B., Nandan, D. (2021). Analysis on High-Performance Full Adders. In: Deshpande, P., Abraham, A., Iyer, B., Ma, K. (eds) Next Generation Information Processing System. Advances in Intelligent Systems and Computing, vol 1162 . Springer, Singapore. https://doi.org/10.1007/978-981-15-4851-2_13

Download citation

Publish with us

Policies and ethics