Skip to main content

A Review of Enhanced Micromixing Techniques in Microfluidics for the Application in Wastewater Analysis

  • Chapter
  • First Online:
Advances in Waste Processing Technology

Abstract

Owing to new methods in agriculture, modern techniques and innovations in domestic activities and mushroom industrialization, rigorous studies are required to understand the wastewater ingredients and their toxicities so that minimization of harmful effects can be achieved. Micromixers may provide insight for analysis in efficient and reliable water treatment methods. Due to the high interfacial-area-to-volume ratio of fluids in micromixers, the study of interaction/reaction between several mixtures and chemicals can be performed, for in-depth, microscale wastewater analysis. This involves various applications, including analysis of wastewater for monitoring and evaluation of heavy metal removal, diclofenac detection, consumption assessment of the illicit drug, tobacco, alcohol and cocaine within local communities and treatment of palm oil mill effluent. However, achieving adequate mixing performance is considerably difficult in microfluidic micromixer, as the flow is always associated with unfavourable laminar flow and dominated by molecular diffusion. As an effort to address the issue, active and passive mixing configurations have been proposed in previous studies. Active mixing mechanism operates on the basis of external energy input to actuate relevant actuators, to enhance mixing by stretching and folding of the fluid mixture by several modes such as pressure, thermal effect, magnetohydrodynamic, electrohydrodynamic, vibration, acoustic and microstirrer. Passive mixing mechanism can be categorized based on different fluid stream types which ascribe to geometric design modifications such as lamination, chaotic advection, droplet, collision of jets and special effects. In the prospect of reducing energy consumption, the passive flow driving mechanism does not require energy as it mostly depends on the effects of surface tension, capillary action and gravity rather than using powered syringe pumps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansari, M. A., Kim, K.-Y., Anwar, K., & Kim, S. M. (2010). A novel passive micromixer based on unbalanced splits and collisions of fluid streams. Journal of Micromechanics and Microengineering, 20(5), 55007–55018.

    Article  CAS  Google Scholar 

  • Bijlsma, L., Botero-Coy, A. M., Rincón, R. J., Peñuela, G. A., & Hernández, F. (2016). Estimation of illicit drug use in the main cities of Colombia by means of urban wastewater analysis. Science of the Total Environment, 565, 984–993.

    Article  CAS  Google Scholar 

  • Boczkaj, G., & Fernandes, A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chemical Engineering Journal, 320, 608–633.

    Article  CAS  Google Scholar 

  • Capretto, L., Cheng, W., Hill, M., & Zhang, X. (2011). Micromixing within microfluidic devices. In Microfluidics (pp. 27–68). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Castiglioni, S., Senta, I., Borsotti, A., Davoli, E., & Zuccato, E. (2015). A novel approach for monitoring tobacco use in local communities by wastewater analysis. Tobacco Control, 24(1), 38–42.

    Article  Google Scholar 

  • Chen, X., & Wang, X. (2015). Optimized modular design and experiment for staggered herringbone chaotic micromixer. International Journal of Chemical Reactor Engineering, 13(3), 305–309.

    Article  CAS  Google Scholar 

  • Chen, C.-Y., Hsu, C.-C., Mani, K., & Panigrahi, B. (2016a). Hydrodynamic influences of artificial cilia beating behaviors on micromixing. Chemical Engineering Processing: Process Intensification, 99, 33–40.

    Article  CAS  Google Scholar 

  • Chen, X., Li, T., Zeng, H., Hu, Z., & Fu, B. (2016b). Numerical and experimental investigation on micromixers with serpentine microchannels. International Journal of Heat and Mass Transfer, 98, 131–140.

    Article  CAS  Google Scholar 

  • Chen, X., & Zhao, Z. (2017). Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer. Analytica Chimica Acta, 964, 142–149.

    Article  CAS  Google Scholar 

  • Chen, X., Shen, J., & Hu, Z. (2018). Fabrication and performance evaluation of two multi-layer passive micromixers. Sensor Review, 38(3), 321–325.

    Article  Google Scholar 

  • Cortelezzi, L., Ferrari, S., & Dubini, G. (2017). A scalable active micro-mixer for biomedical applications. Microfluidics and Nanofluidics, 21(3), 31–47.

    Article  Google Scholar 

  • Fu, H., Liu, X., & Li, S. (2017). Mixing indexes considering the combination of mean and dispersion information from intensity images for the performance estimation of micromixing. RSC Advances, 7(18), 10906–10914.

    Article  CAS  Google Scholar 

  • Gao, Z., Han, J., Bao, Y., & Li, Z. (2015). Micromixing efficiency in a T-shaped confined impinging jet reactor. Chinese Journal of Chemical Engineering, 23(2), 350–355.

    Article  CAS  Google Scholar 

  • Gartner, C. (2015). Flushing out smoking: Measuring population tobacco use via wastewater analysis. Tobacco Control, 24(1), 1–2.

    Article  Google Scholar 

  • Guha, R., Xiong, B., Geitner, M., Moore, T., Wood, T. K., Velegol, D., et al. (2017). Reactive micromixing eliminates fouling and concentration polarization in reverse osmosis membranes. Journal of Membrane Science, 542, 8–17.

    Article  CAS  Google Scholar 

  • Gupta, V., Carrott, P., Ribeiro Carrott, M., & Suhas, (2009). Low-cost adsorbents: growing approach to wastewater treatment—A review. Critical Reviews in Environmental Science Technology, 39(10), 783–842.

    Article  Google Scholar 

  • Heshmatnezhad, F., Aghaei, H., & Nazar, A. R. S. (2017). Parametric study of obstacle geometry effect on mixing performance in a convergent-divergent micromixer with sinusoidal walls. Chemical Product Process Modeling, 12(1), 1–12.

    Article  CAS  Google Scholar 

  • Izadi, M., Rahimi, M., & Beigzadeh, R. (2019). Evaluation of micromixing in helically coiled microreactors using artificial intelligence approaches. Chemical Engineering Journal, 356, 570–579.

    Article  CAS  Google Scholar 

  • Jafarian, A., Pishevar, A., & Saidi, M. (2014). Modeling active micromixers with multiple microstirrers using smoothed particle hydrodynamics. Scientia Iranica. Transaction B, Mechanical Engineering, 21(4), 1390–1402.

    Google Scholar 

  • Jeon, N. L., Dertinger, S. K., Chiu, D. T., Choi, I. S., Stroock, A. D., & Whitesides, G. M. (2000). Generation of solution and surface gradients using microfluidic systems. Langmuir, 16(22), 8311–8316.

    Article  CAS  Google Scholar 

  • Jiang, F., Drese, K. S., Hardt, S., Küpper, M., & Schönfeld, F. (2004). Helical flows and chaotic mixing in curved micro channels. AIChE Journal, 50(9), 2297–2305.

    Article  CAS  Google Scholar 

  • Jiang, L., Wang, W., Chau, Y., & Yao, S. (2013). Controllable formation of aromatic nanoparticles in a three-dimensional hydrodynamic flow focusing microfluidic device. RSC Advances, 3(39), 17762–17769.

    Article  CAS  Google Scholar 

  • Karvelas, E., Liosis, C., Benos, L., Karakasidis, T., & Sarris, I. (2019). Micromixing efficiency of particles in heavy metal removal processes under various inlet conditions. Water, 11(6), 1135.

    Article  CAS  Google Scholar 

  • Khozeymeh-Nezhad, H., & Niazmand, H. (2018). A double MRT-LBM for simulation of mixing in an active micromixer with rotationally oscillating stirrer in high Peclet number flows. International Journal of Heat and Mass Transfer, 122, 913–921.

    Article  CAS  Google Scholar 

  • Kim, H.-S., Kim, H.-O., & Kim, Y.-J. (2018). Effect of electrode configurations on the performance of electro-hydrodynamic micromixer. In ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers.

    Google Scholar 

  • Kim, N., Chan, W. X., Ng, S. H., & Yoon, Y.-J. (2018b). An acoustic micromixer using low-powered voice coil actuation. Journal of Microelectromechanical Systems, 27(2), 171–178.

    Article  CAS  Google Scholar 

  • Kou, S., Nam, S.-W., Shumi, W., Lee, M.-H., Bae, S.-W., Du, J., et al. (2009). Microfluidic detection of multiple heavy metal ions using fluorescent chemosensors. Bulletin of the Korean Chemical Society, 30(5), 1173–1176.

    Article  CAS  Google Scholar 

  • Kumar, V., Paraschivoiu, M., & Nigam, K. (2011). Single-phase fluid flow and mixing in microchannels. Chemical Engineering Science, 66(7), 1329–1373.

    Article  CAS  Google Scholar 

  • Kwak, T. J., Nam, Y. G., Najera, M. A., Lee, S. W., Strickler, J. R., & Chang, W.-J. (2016). Convex grooves in staggered herringbone mixer improve mixing efficiency of laminar flow in microchannel. PLoS ONE, 11(11), 1–15.

    Article  CAS  Google Scholar 

  • Le The, H., Le Thanh, H., Dong, T., Ta, B. Q., Tran-Minh, N., & Karlsen, F. (2015). An effective passive micromixer with shifted trapezoidal blades using wide Reynolds number range. Chemical Engineering and Research Design, 93, 1–11.

    Article  CAS  Google Scholar 

  • Lee, C.-Y., Wang, W.-T., Liu, C.-C., & Fu, L.-M. (2016). Passive mixers in microfluidic systems: A review. Chemical Engineering Journal, 288, 146–160.

    Article  CAS  Google Scholar 

  • Li, Y., Zhang, D., Feng, X., Xu, Y., & Liu, B.-F. (2012). A microsecond microfluidic mixer for characterizing fast biochemical reactions. Talanta, 88, 175–180.

    Article  CAS  Google Scholar 

  • Liu, G., Ma, X., Wang, C., Sun, X., & Tang, C. (2018). Piezoelectric driven self-circulation micromixer with high frequency vibration. Journal of Micromechanics and Microengineering, 28(8), 1–12.

    Article  CAS  Google Scholar 

  • Lu, M., Ozcelik, A., Grigsby, C. L., Zhao, Y., Guo, F., Leong, K. W., et al. (2016). Microfluidic hydrodynamic focusing for synthesis of nanomaterials. Nano Today, 11(6), 778–792.

    Article  CAS  Google Scholar 

  • Mäki, A.-J., Hemmilä, S., Hirvonen, J., Girish, N. N., Kreutzer, J., Hyttinen, J., et al. (2015). Modeling and experimental characterization of pressure drop in gravity-driven microfluidic systems. Journal of Fluids Engineering, 137(2), 1–8.

    Article  CAS  Google Scholar 

  • Martínez-Huitle, C. A., & Panizza, M. (2018). Electrochemical oxidation of organic pollutants for wastewater treatment. Current Opinion in Electrochemistry, 11, 62–71.

    Article  CAS  Google Scholar 

  • Michael, I., Rizzo, L., McArdell, C., Manaia, C., Merlin, C., Schwartz, T., et al. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 47(3), 957–995.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, S. (2017). Experimental investigations on the interactions between liquids and structures to passively control the surface-driven capillary flow in microfluidic lab-on-a-chip systems to separate the microparticles for bioengineering applications. Surface Review and Letters, 24(06), 1–10.

    Article  CAS  Google Scholar 

  • Nimafar, M., Viktorov, V., & Martinelli, M. (2012). Experimental comparative mixing performance of passive micromixers with H-shaped sub-channels. Chemical Engineering Science, 76, 37–44.

    Article  CAS  Google Scholar 

  • Nouri, D., Zabihi-Hesari, A., & Passandideh-Fard, M. (2017). Rapid mixing in micromixers using magnetic field. Sensors and Actuators, A: Physical, 255, 79–86.

    Article  CAS  Google Scholar 

  • Oller, I., Malato, S., & Sánchez-Pérez, J. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—A review. Science of the Total Environment, 409(20), 4141–4166.

    Article  CAS  Google Scholar 

  • Park, J.-Y., Kim, Y.-D., Kim, S.-R., Han, S.-Y., & Maeng, J.-S. (2008). Robust design of an active micro-mixer based on the Taguchi method. Sensors and Actuators B: Chemical, 129(2), 790–798.

    Article  CAS  Google Scholar 

  • Parsa, M. K., Hormozi, F., & Jafari, D. (2014). Mixing enhancement in a passive micromixer with convergent–divergent sinusoidal microchannels and different ratio of amplitude to wave length. Computers & Fluids, 105, 82–90.

    Article  CAS  Google Scholar 

  • Parvizian, F., Rahimi, M., & Azimi, N. (2012). Macro- and micromixing studies on a high frequency continuous tubular sonoreactor. Chemical Engineering and Processing: Process Intensification, 57, 8–15.

    Article  CAS  Google Scholar 

  • Pérez, J., Llanos, J., Sáez, C., López, C., Cañizares, P., & Rodrigo, M. (2018). Development of an innovative approach for low-impact wastewater treatment: A microfluidic flow-through electrochemical reactor. Chemical Engineering Journal, 351, 766–772.

    Article  CAS  Google Scholar 

  • Rodríguez-Álvarez, T., Racamonde, I., González-Mariño, I., Borsotti, A., Rodil, R., Rodríguez, I., et al. (2015). Alcohol and cocaine co-consumption in two European cities assessed by wastewater analysis. Science of the Total Environment, 536, 91–98.

    Article  CAS  Google Scholar 

  • Ryu, S.-P., Park, J.-Y., & Han, S.-Y. (2011). Optimum design of an active micro-mixer using successive Kriging method. International Journal of Precision Engineering and Manufacturing, 12(5), 849–855.

    Article  Google Scholar 

  • Sakurai, R., Yamamoto, K., & Motosuke, M. (2018). Concentration-adjustable micromixer using droplet injection into a microchannel. Analyst, 144, 2780–2787.

    Article  Google Scholar 

  • Sarkar, S., Singh, K., Shankar, V., & Shenoy, K. (2014). Numerical simulation of mixing at 1–1 and 1–2 microfluidic junctions. Chemical Engineering and Processing: Process Intensification, 85, 227–240.

    Article  CAS  Google Scholar 

  • Sasaki, N., Kitamori, T., & Kim, H.-B. (2006). AC electroosmotic micromixer for chemical processing in a microchannel. Lab on a Chip, 6(4), 550–554.

    Article  CAS  Google Scholar 

  • Scherr, T., Quitadamo, C., Tesvich, P., Park, D. S.-W., Tiersch, T., Hayes, D., et al. (2012). A planar microfluidic mixer based on logarithmic spirals. Journal of Micromechanics and Microengineering, 22(5), 1–10.

    Article  CAS  Google Scholar 

  • Schirmer, C., Posseckardt, J., Kick, A., Rebatschek, K., Fichtner, W., Ostermann, K., et al. (2018). Encapsulating genetically modified Saccharomyces cerevisiae cells in a flow-through device towards the detection of diclofenac in wastewater. Journal of Biotechnology, 284, 75–83.

    Article  CAS  Google Scholar 

  • Shah, I., Kim, S. W., Kim, K., Doh, Y. H., & Choi, K. H. (2019). Experimental and numerical analysis of Y-shaped split and recombination micro-mixer with different mixing units. Chemical Engineering Journal, 358, 691–706.

    Article  CAS  Google Scholar 

  • Shamloo, A., Vatankhah, P., & Akbari, A. (2017). Analyzing mixing quality in a curved centrifugal micromixer through numerical simulation. Chemical Engineering and Processing: Process Intensification, 116, 9–16.

    Article  CAS  Google Scholar 

  • Shamsoddini, R. (2018). SPH investigation of the thermal effects on the fluid mixing in a microchannel with rotating stirrers. Fluid Dynamics Research, 50(2), 1–17.

    Article  Google Scholar 

  • Shamsoddini, R., Sefid, M., & Fatehi, R. (2016). Incompressible SPH modeling and analysis of non-Newtonian power-law fluids, mixing in a microchannel with an oscillating stirrer. Journal of Mechanical Science and Technology, 30(1), 307–316.

    Article  Google Scholar 

  • Sivashankar, S., Agambayev, S., Mashraei, Y., Li, E. Q., Thoroddsen, S. T., & Salama, K. N. (2016). A “twisted” microfluidic mixer suitable for a wide range of flow rate applications. Biomicrofluidics, 10(3), 1–13.

    Article  CAS  Google Scholar 

  • Sudarsan, A. P., & Ugaz, V. M. (2006). Fluid mixing in planar spiral microchannels. Lab on a Chip, 6(1), 74–82.

    Article  CAS  Google Scholar 

  • Ta, B. Q., Lê Thanh, H., Dong, T., Thoi, T. N., & Karlsen, F. (2015). Geometric effects on mixing performance in a novel passive micromixer with trapezoidal-zigzag channels. Journal of Micromechanics and Microengineering, 25(9), 1–11.

    Google Scholar 

  • Tamrin, K., & Zahrim, A. (2017). Determination of optimum polymeric coagulant in palm oil mill effluent coagulation using multiple-objective optimisation on the basis of ratio analysis (MOORA). Environmental Science Pollution Research, 24(19), 15863–15869.

    Article  CAS  Google Scholar 

  • Tang, X., Zheng, H., Teng, H., Sun, Y., Guo, J., Xie, W., et al. (2016). Chemical coagulation process for the removal of heavy metals from water: A review. Desalination Water Treatment, 57(4), 1733–1748.

    Article  CAS  Google Scholar 

  • Tscharke, B. J., Chen, C., Gerber, J. P., & White, J. M. (2016). Temporal trends in drug use in Adelaide, South Australia by wastewater analysis. Science of the Total Environment, 565, 384–391.

    Article  CAS  Google Scholar 

  • Walker, G. M., & Beebe, D. J. (2002). A passive pumping method for microfluidic devices. Lab on a Chip, 2(3), 131–134.

    Article  CAS  Google Scholar 

  • Wang, L., Liu, D., Wang, X., & Han, X. (2012). Mixing enhancement of novel passive microfluidic mixers with cylindrical grooves. Chemical Engineering Science, 81, 157–163.

    Article  CAS  Google Scholar 

  • Wang, N., Zhang, X., Wang, Y., Yu, W., & Chan, H. L. (2014). Microfluidic reactors for photocatalytic water purification. Lab on a Chip, 14(6), 1074–1082.

    Article  CAS  Google Scholar 

  • Ward, K., & Fan, Z. H. (2015). Mixing in microfluidic devices and enhancement methods. Journal of Micromechanics Microengineering, 25(9), 1–17.

    Article  CAS  Google Scholar 

  • Xu, C., & Chu, Y. (2015). Experimental study on oscillating feedback micromixer for miscible liquids using the Coanda effect. AIChE Journal, 61(3), 1054–1063.

    Article  CAS  Google Scholar 

  • Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., et al. (2012). Use of iron oxide nanomaterials in wastewater treatment: A review. Science of the Total Environment, 424, 1–10.

    Article  CAS  Google Scholar 

  • You, J. B., Kang, K., Tran, T. T., Park, H., Hwang, W. R., Kim, J. M., et al. (2015). PDMS-based turbulent microfluidic mixer. Lab on a Chip, 15(7), 1727–1735.

    Article  CAS  Google Scholar 

  • Zahrim, A., Nasimah, A., & Hilal, N. (2014). Pollutants analysis during conventional palm oil mill effluent (POME) ponding system and decolourisation of anaerobically treated POME via calcium lactate-polyacrylamide. Journal of Water Process Engineering, 4, 159–165.

    Article  Google Scholar 

  • Zuccato, E., Castiglioni, S., Senta, I., Borsotti, A., Genetti, B., Andreotti, A., et al. (2016). Population surveys compared with wastewater analysis for monitoring illicit drug consumption in Italy in 2010–2014. Drug Alcohol Dependence, 161, 178–188.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Tamrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmud, F., Tamrin, K.F., Sheikh, N.A. (2020). A Review of Enhanced Micromixing Techniques in Microfluidics for the Application in Wastewater Analysis. In: Yaser, A. (eds) Advances in Waste Processing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4821-5_1

Download citation

Publish with us

Policies and ethics