Skip to main content

Recent Advances on UV-Enhanced Oxide Nanostructures Gas Sensors

  • Chapter
  • First Online:
Functional Nanomaterials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

UV-enhanced gas sensors using functional nanomaterials have been studied widely, aiming to lower the operating temperature and thus lower the power consumption. This chapter demonstrates UV-enhanced oxide nanostructures and their working principle, issues, and gas sensing performance. Mainly, current states on zinc oxide and their hybrid nanocomposites with other metal oxide and 2D materials, their fabrication methods, and sensing properties have been discussed. Moreover, it also demonstrates the strategies to achieve gas sensing performance under controlled conditions. Finally, summary and some aspects for the future outlook have been discussed on light-activated functional nanomaterials for next-generation gas sensor devices.

Author Contributions

All the authors have contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malik R, Tomer VK (2018) Cubic mesoporous Pd–WO3 loaded graphitic carbon nitride (g-CN) nanohybrids: highly sensitive and temperature dependent VOC sensors. J Mater Chem A 6:10718–10730. https://doi.org/10.1039/C8TA02702A

  2. Tomer VK, Adhyapak PV, Duhan S, Mulla IS (2014) Humidity sensing properties of Ag-loaded mesoporous silica SBA-15 nanocomposites prepared via hydrothermal process. Microporous Mesoporous Mater 197:140–147. https://doi.org/10.1016/j.micromeso.2014.06.007

    Article  CAS  Google Scholar 

  3. Duhan S, Tomer VK (2014) Chapter-6, Mesoporous silica: making “Sense” of sensors. In: Advanced sensor and detection materials. Wiley-Scrivener, USA, pp 147–192. https://doi.org/10.1002/9781118774038.ch6

  4. Malik R, Tomer VK, Joshi N (2018) Au–TiO2-loaded cubic g-C3N4 nanohybrids for photocatalytic and volatile organic amine sensing applications. ACS Appl Mater Interfaces 10:34087–34097. https://doi.org/10.1021/acsami.8b08091

  5. Chaudhary V, Malik R, Tomer VK, et al (2016) Enhanced relative humidity sensing performance using TiO2 Loaded SiO2 nanocomposite. energy environ. Focus 5:234–239

    Google Scholar 

  6. Tomer VK, Malik R, Joshi N (2019) A special section on applications of 2D/3D materials in sensing and photocatalysis. J Nanosci Nanotechnol 19:5052–5053

    Google Scholar 

  7. Poonia E, Mishra PK, Kiran V et al (2019) Aero-gel based CeO2 nanoparticles: synthesis, structural properties and detailed humidity sensing response. J Mater Chem C 7:5477–5487. https://doi.org/10.1039/C9TC01081E

    Article  CAS  Google Scholar 

  8. Malik R, Tomer VK (2018) Ordered mesoporous Ag–ZnO@g-CN nanohybrid as highly efficient bifunctional sensing material. Adv Mater Interfaces 5:1701357. https://doi.org/10.1002/admi.201701357

  9. Tomer VK, Singh K, Kaur H et al (2017) Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sensors Actuators B Chem 253:703–713. https://doi.org/10.1016/j.snb.2017.06.179

  10. Malik R, Tomer VK, Chaudhary V et al (2017) Ordered mesoporous in-(TiO2/WO3) nanohybrid: an ultrasensitive n-butanol sensor. Sensors Actuators B Chem 239:364–373. https://doi.org/10.1016/j.snb.2016.08.022

  11. Malik R, Tomer VK, Chaudhary V et al (2018) A low temperature, highly sensitive and fast response toluene gas sensor based on In(III)-SnO2 loaded cubic mesoporous graphitic carbon nitride. Sensors Actuators B Chem 255:3564–3575. https://doi.org/10.1016/j.snb.2017.09.193

  12. Seiyama T, Kato A, Fujiishi K, Nagatani M (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem. https://doi.org/10.1021/ac60191a001

    Article  Google Scholar 

  13. Tomer VK, Malik R, Kailasam K (2017) Near-room-temperature ethanol detection using Ag-loaded mesoporous carbon nitrides. ACS Omega 2:3658–3668. https://doi.org/10.1021/acsomega.7b00479

  14. Tomer VK, Duhan S (2016) Ordered mesoporous Ag-doped TiO2/SnO2 nanocomposite based highly sensitive and selective VOC sensors. J Mater Chem A 4:1033–1043. https://doi.org/10.1039/C5TA08336B

  15. Poonia E, Mishra PK, Kiran V et al (2018) Aero-gel assisted synthesis of anatase TiO2 nanoparticles for humidity sensing application. Dalt Trans 47:6293–6298. https://doi.org/10.1039/C8DT00106E

    Article  CAS  Google Scholar 

  16. Malik R, Tomer VK, Chaudhary V et al (2017) An excellent humidity sensor based on In–SnO2 loaded mesoporous graphitic carbon nitride. J Mater Chem A 5:14134–14143. https://doi.org/10.1039/C7TA02860A

  17. Joshi N, Hayasaka T, Liu Y et al (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185:213. https://doi.org/10.1007/s00604-018-2750-5

    Article  CAS  Google Scholar 

  18. Joshi N, da Silva LF, Shimizu FM et al (2019) UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature. Microchim Acta 186:418. https://doi.org/10.1007/s00604-019-3532-4

    Article  CAS  Google Scholar 

  19. Fan SW, Srivastava AK, Dravid VP (2009) UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl Phys Lett 10(1063/1):3243458

    Google Scholar 

  20. da Silva LF, M’Peko JC, Catto AC et al (2017) UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2016.08.158

    Article  Google Scholar 

  21. Neri G (2015) First fifty years of chemoresistive gas sensors. Chemosensors

    Google Scholar 

  22. Nie J, Wu Y, Huang Q et al (2019) Dew point measurement using a carbon-based capacitive sensor with active temperature control. ACS Appl Mater Interfaces 11:1699–1705. https://doi.org/10.1021/acsami.8b18538

    Article  CAS  Google Scholar 

  23. Singh H, Tomer VK, Jena N et al (2017) A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing. J Mater Chem A 5:21820–21827. https://doi.org/10.1039/C7TA05043G

    Article  CAS  Google Scholar 

  24. Tomer VK, Duhan S (2016) A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance. Sensors Actuators B Chem 223:750–760. https://doi.org/10.1016/j.snb.2015.09.139

  25. Malik R, Tomer VK, Chaudhary V et al (2016) Facile synthesis of hybridized mesoporous Au@TiO2/SnO2 as efficient photocatalyst and selective VOC sensor. ChemistrySelect 1:3247–3258. https://doi.org/10.1002/slct.201600634

  26. Materón EM, Lima RS, Joshi N, et al (2019) Chapter 13—graphene-containing microfluidic and chip-based sensor devices for biomolecules. In PA, Rameshkumar (ed) PBT-G-BES for B micro and nano technologies. Elsevier, pp 321–336

    Google Scholar 

  27. Liu H, Liu Y, Chu Y, et al (2018) AC phase sensing of graphene FETs for chemical vapors with fast recovery and minimal baseline drift. Sensors Actuators B Chem 263. https://doi.org/10.1016/j.snb.2018.01.244

  28. Liu H, Chu Y, Liu Y et al (2018) Selective sensing of chemical vapors using phase spectra detection on CVD graphene fet. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)

    Google Scholar 

  29. Wu Y, Huang Q, Nie J et al (2019) All-Carbon based flexible humidity sensor. J Nanosci Nanotechnol 19:5310–5316

    Google Scholar 

  30. Malik R, Rana PS, Tomer VK et al (2016) Nano gold supported on ordered mesoporous WO3/SBA-15 hybrid nanocomposite for oxidative decolorization of azo dye. Microporous Mesoporous Mater 225:245–254. https://doi.org/10.1016/j.micromeso.2015.12.013

    Article  CAS  Google Scholar 

  31. Malik R, Chaudhary V, Tomer VK, et al (2016) Visible light-driven mesoporous Au–TiO2/SiO2 photocatalysts for advanced oxidation process. Ceram Int 42:10892–10901. https://doi.org/10.1016/j.ceramint.2016.03.222

  32. Tomer VK, Devi S, Malik R et al (2016) Highly sensitive and selective volatile organic amine (VOA) sensors using mesoporous WO3–SnO2 nanohybrids. Sensors Actuators B Chem 229:321–330. https://doi.org/10.1016/j.snb.2016.01.124

  33. Wang C, Chu X, Wu M (2006) Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2005.03.011

    Article  Google Scholar 

  34. Shankar P, Rayappan JBB (2017) Monomer: design of ZnO nanostructures (Nanobush and Nanowire) and their room-temperature ethanol vapor sensing signatures. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.7b11561

    Article  Google Scholar 

  35. Vijayalakshmi K, Gopalakrishna D (2014) Influence of pyrolytic temperature on the properties of ZnO films optimized for H2 sensing application. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-014-1868-4

    Article  Google Scholar 

  36. Van Quy N, Minh VA, Van Luan N et al (2011) Gas sensing properties at room temperature of a quartz crystal microbalance coated with ZnO nanorods. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2010.10.030

    Article  Google Scholar 

  37. Banerjee N, Roy S (2018) Alcohol sensing performance of ZnO nano-flower based resistive sensor: comparative study. In: 2018 Emerging Trends in Electronic Devices and Computational Techniques, EDCT 2018

    Google Scholar 

  38. Pan X, Zhao X, Chen J et al (2015) A fast-response/recovery ZnO hierarchical nanostructure based gas sensor with ultra-high room-temperature output response. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2014.08.089

    Article  Google Scholar 

  39. Zhu L, Zeng W, Ye H, Li Y (2018) Volatile organic compound sensing based on coral rock-like ZnO. Mater Res Bull. https://doi.org/10.1016/j.materresbull.2017.12.043

    Article  Google Scholar 

  40. Subbiah DK, Mani GK, Babu KJ et al (2018) Nanostructured ZnO on cotton fabrics—A novel flexible gas sensor & UV filter. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.05.110

    Article  Google Scholar 

  41. Sin Tee T, Chun Hui T, Wu Yi C et al (2016) Microwave-assisted hydrolysis preparation of highly crystalline ZnO nanorod array for room temperature photoluminescence-based CO gas sensor. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2015.12.058

    Article  Google Scholar 

  42. El khalidi Z, Hartiti B, Siadat M et al (2019) Acetone sensor based on Ni doped ZnO nanostructues: growth and sensing capability. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-019-01083-9

  43. Joshi N, Shimizu FM, Awan IT et al (2017) Ozone sensing properties of nickel phthalocyanine:ZnO nanorod heterostructures. In Proceedings of IEEE sensors. IEEE, pp 1–3

    Google Scholar 

  44. Gurav KV, Gang MG, Shin SW et al (2014) Gas sensing properties of hydrothermally grown ZnO nanorods with different aspect ratios. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2013.08.069

    Article  Google Scholar 

  45. Pan X, Zhao X (2015) Ultra-high sensitivity zinc oxide nanocombs for on-chip room temperature carbon monoxide sensing. Sensors (Switzerland). https://doi.org/10.3390/s150408919

    Article  Google Scholar 

  46. Zhou Q, Hong C, Li Z et al (2017) Facile hydrothermal synthesis and enhanced methane sensing properties of Pt-Decorated ZnO nanosheets. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2018.14626

    Article  Google Scholar 

  47. Aswal DK, Gupta SK (2007) Science and technology of chemiresistor gas sensors

    Google Scholar 

  48. Tomer VK, Duhan S, Adhyapak PV, Mulla IS (2015) Mn-loaded mesoporous silica nanocomposite: a highly efficient humidity Sensor. J Am Ceram Soc 98:741–747. https://doi.org/10.1111/jace.13383

  49. Tomer VK, Duhan S, Sharma AK et al (2015) One pot synthesis of mesoporous ZnO–SiO2 nanocomposite as high performance humidity sensor. Colloids Surfaces A Physicochem Eng Asp 483:121–128. https://doi.org/10.1016/j.colsurfa.2015.07.046

  50. Tomer VK, Duhan S (2015) In-situ synthesis of SnO2/SBA-15 hybrid nanocomposite as highly efficient humidity sensor. Sensors Actuators B Chem 212:517–525. https://doi.org/10.1016/j.snb.2015.02.054

  51. Tomer VK, Duhan S (2015) Nano titania loaded mesoporous silica: preparation and application as high performance humidity sensor. Sensors Actuators B Chem 220:192–200. https://doi.org/10.1016/j.snb.2015.05.072

  52. Malik R, Tomer VK, Duhan S et al (2016) Facile preparation of TiO2-SnO2 catalysts using TiO2 as an auxiliary for gas sensing and advanced oxidation processes. MRS Adv 1:3157–3162. https://doi.org/10.1557/adv.2016.438

  53. Malik R, Tomer VK, Mishra YK, Lin L (2020) Functional gas sensing nanomaterials: a panoramic view. Appl Phys Rev 7:021301. https://doi.org/10.1063/1.5123479

  54. Espid E, Taghipour F (2017) UV-LED photo-activated chemical gas sensors: a review. Crit Rev Solid State Mater, Sci

    Book  Google Scholar 

  55. Espid E (2015) UV-LED photo-activated metal oxide semiconductors for gas sensing application : fabrication and performance evaluation. University of British Columbia

    Google Scholar 

  56. Malik R, Tomer VK, Rana PS et al (2015) Surfactant assisted hydrothermal synthesis of porous 3-D hierarchical SnO2 nanoflowers for photocatalytic degradation of Rose Bengal. Mater Lett 154:124–127. https://doi.org/10.1016/j.matlet.2015.04.056

    Article  CAS  Google Scholar 

  57. Duhan S, Dehiya BS, Tomer V (2013) Microstructure and photocatalytic dye degradation of silver- silica nanocomposites synthesised by sol-gel method. Adv Mater Lett 4:317–322. https://doi.org/10.5185/amlett.2012.8414

    Article  Google Scholar 

  58. Adhyapak PV, Meshram SP, Tomar V et al (2013) Effect of preparation parameters on the morphologically induced photocatalytic activities of hierarchical zinc oxide nanostructures. Ceram Int 39:7367–7378. https://doi.org/10.1016/j.ceramint.2013.02.076

    Article  CAS  Google Scholar 

  59. Shorie M, Kumar V, Kaur H et al (2018) Plasmonic DNA hotspots made from tungsten disulfide nanosheets and gold nanoparticles for ultrasensitive aptamer-based SERS detection of myoglobin. Microchim Acta. https://doi.org/10.1007/s00604-018-2705-x

    Article  Google Scholar 

  60. Poonia E, Duhan S, Kumar K et al (2019) One pot hydrothermal synthesis of ordered mesoporous SnO2/SBA-16 nanocomposites. J Porous Mater 26:553–560. https://doi.org/10.1007/s10934-018-0651-y

    Article  CAS  Google Scholar 

  61. Tomer VK, Jangra S, Malik R, Duhan S (2015) Effect of in-situ loading of nano titania particles on structural ordering of mesoporous SBA-15 framework. Colloids Surfaces A Physicochem Eng Asp 466:160–165. https://doi.org/10.1016/j.colsurfa.2014.11.025

  62. Poonia E, Dahiya MS, Tomer VK et al (2018) Humidity sensing behavior of tin-loaded 3-D cubic mesoporous silica. Phys E Low-dimensional Syst Nanostruct 101:284–293. https://doi.org/10.1016/j.physe.2018.04.017

    Article  CAS  Google Scholar 

  63. Tomer VK, Thangaraj N, Gahlot S, Kailasam K (2016) Cubic mesoporous Ag@CN: a high performance humidity sensor. Nanoscale 8:19794–19803. https://doi.org/10.1039/C6NR08039A

  64. Tomer VK, Devi S, Malik R et al (2016) Fast response with high performance humidity sensing of Ag–SnO2/SBA-15 nanohybrid sensors. Microporous Mesoporous Mater 219:240–248. https://doi.org/10.1016/j.micromeso.2015.08.016

  65. Park S, An S, Mun Y, Lee C (2013) UV-enhanced NO2 gas sensing properties of SnO2-Core/ZnO-shell nanowires at room temperature. ACS Appl Mater Interfaces. https://doi.org/10.1021/am400500a

    Article  Google Scholar 

  66. Chen H, Liu Y, Xie C et al (2012) A comparative study on UV light-activated porous TiO2 and ZnO film sensors for gas sensing at room temperature. Ceram Int. https://doi.org/10.1016/j.ceramint.2011.07.035

    Article  Google Scholar 

  67. Cui J, Jiang J, Shi L et al (2016) The role of Ni doping on photoelectric gas-sensing properties of ZnO nanofibers to HCHO at room-temperature. RSC Adv. https://doi.org/10.1039/c6ra11887a

    Article  Google Scholar 

  68. Lupan O, Cretu V, Postica V et al (2016) Silver-doped zinc oxide single nanowire multifunctional nanosensor with a significant enhancement in response. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2015.10.002

    Article  Google Scholar 

  69. Park S, Sun GJ, Jin C et al (2016) Synergistic effects of a combination of Cr2O3-functionalization and UV-Irradiation techniques on the ethanol gas sensing performance of ZnO nanorod gas sensors. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.5b11485

    Article  Google Scholar 

  70. Joshi N, da Silva LF, Jadhav HS et al (2018) Yolk-shelled ZnCo2O4 microspheres: surface properties and gas sensing application. Sensors Actuators B Chem 257:906–915. https://doi.org/10.1016/j.snb.2017.11.041

  71. Joshi N, Da Silva LF, Jadhav H et al (2016) One-step approach for preparing ozone gas sensors based on hierarchical NiCo2O4 structures. RSC Adv 6. https://doi.org/10.1039/c6ra18384k

  72. Tomer VK, Malik R, Chaudhary V (2019) Superior visible light photocatalysis and low-operating temperature VOCs sensor using cubic Ag(0)-MoS2 loaded g-CN 3D porous hybrid. Appl Mater Today 16:193–203

    Google Scholar 

  73. Malik R, Tomer VK, Joshi N, Chaudhary V, Lin L (2020) Chapter-15, Nanosensors for monitoring indoor pollution in smart cities. In: Nanosensors for smart cities. Elsevier, UK, pp 251–266. https://doi.org/10.1016/B978-0-12-819870-4.00014-1

  74. Tomer VK, Malik R, Chaudhary V, Baruah A (2019) Chapter-14, Noble metals–metal oxide mesoporous nanohybrids in humidity and gas sensing applications. In: Noble metal-metal oxide hybrid nanoparticles: fundamentals and applications. Elsevier, UK, pp 283–302. https://doi.org/10.1016/B978-0-12-814134-2.00014-0

  75. Malik R, Tomer VK, Chaudhary V (2019) Chapter 16, Hybridized graphene for chemical sensing. In: Functionalized graphene nanocomposites and their derivatives. Elsevier, UK, pp 337–368. https://doi.org/10.1016/B978-0-12-814548-7.00016-7

  76. Joshi N, Saxena V, Singh A et al (2014) Flexible H2S sensor based on gold modified polycarbazole films. Sensors Actuators B Chem 200:227–234. https://doi.org/10.1016/j.snb.2014.04.041

    Article  CAS  Google Scholar 

  77. Singh A, Salmi Z, Jha P, et al (2013) One step synthesis of highly ordered free standing flexible polypyrrole-silver nanocomposite films at air-water interface by photopolymerization. RSC Adv 3. https://doi.org/10.1039/c3ra40884a

  78. Mekki A, Joshi N, Singh A, et al (2014) H2S sensing using in situ photo-polymerized polyaniline-silver nanocomposite films on flexible substrates. Org Electron physics Mater Appl 15. https://doi.org/10.1016/j.orgel.2013.10.012

  79. Singh A, Salmi Z, Joshi N, et al (2013) Electrochemical investigation of free-standing polypyrrole-silver nanocomposite films: a substrate free electrode material for supercapacitors. RSC Adv 3. https://doi.org/10.1039/c3ra42786b

  80. Gusain A, Joshi NJ, Varde PV, Aswal DK (2017) Flexible NO gas sensor based on conducting polymer poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT). Sensors Actuators B Chem 239. https://doi.org/10.1016/j.snb.2016.07.176

  81. Singh A, Salmi Z, Joshi N, et al (2013) Photo-induced synthesis of polypyrrole-silver nanocomposite films on N-(3-trimethoxysilylpropyl)pyrrole-modified biaxially oriented polyethylene terephthalate flexible substrates. RSC Adv 3. https://doi.org/10.1039/c3ra22981e

  82. Kumar A, Joshi N, Samanta S et al (2015) Room temperature detection of H<inf>2</inf>S by flexible gold-cobalt phthalocyanine heterojunction thin films. Sensors Actuators B Chem 206. https://doi.org/10.1016/j.snb.2014.09.074

  83. Singh A, Kumar A, Kumar A, et al (2013) Bending stress induced improved chemiresistive gas sensing characteristics of flexible cobalt-phthalocyanine thin films. Appl Phys Lett 102. https://doi.org/10.1063/1.4800446

  84. Tomer VK, Duhan S (2015) Highly sensitive and stable relative humidity sensors based on WO3 modified mesoporous silica. Appl Phys Lett 106:063105. https://doi.org/10.1063/1.4908116

  85. Tomer VK, Duhan S, Sharma AK et al (2015) Humidity-sensing properties of Ag0 nanoparticles supported on WO3-SiO2 with super rapid response and excellent stability. Eur J Inorg Chem 2015:5232–5240. https://doi.org/10.1002/ejic.201500858

  86. Malik R, Chaudhary V, Tomer VK, Nehra SP (2017) Nanocasted synthesis of Ag/WO3 nanocomposite with enhanced sensing and photocatalysis applications. Energy Environ Focus 6:43–48

    Google Scholar 

  87. Malik R, Rana PS, Chaudhary V et al (2017) Nanostructured WO3/SnO2 and TiO2/SnO2 Heterojunction with Enhanced Photocatalytic Performance. Energy Environ Focus 5:108–115

    Google Scholar 

  88. Drmosh QA, Hendi AH, Hossain MK et al (2019) UV-activated gold decorated rGO/ZnO heterostructured nanocomposite sensor for efficient room-temperature H2 detection. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2019.03.077

    Article  Google Scholar 

Download references

Acknowledgements

NJ wants to acknowledge the Brazilian funding agencies: São Paulo Research Foundation-FAPESP (2014/23546-1, 2016/23474-6). RM is thankful to UC Berkeley for providing visiting scholar supports. VKT is thankful to the United States-India Education Foundation (USIEF) for Fulbright-Nehru award (Award No: 2308/FNPDR/2017). JN is grateful to the National Natural Science Foundation of China (61603349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirav Joshi .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, N., Tomer, V.K., Malik, R., Nie, J. (2020). Recent Advances on UV-Enhanced Oxide Nanostructures Gas Sensors. In: Thomas, S., Joshi, N., Tomer, V. (eds) Functional Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-4810-9_6

Download citation

Publish with us

Policies and ethics