Skip to main content

Novel CO and CO2 Sensor Based on Nanostructured Dy2O3 Microspheres Synthesized by the Coprecipitation Method

  • Chapter
  • First Online:
Functional Nanomaterials

Abstract

Rare earth oxides have outstanding physical and chemical properties that attract the scientific and technological interest worldwide. Particularly, Dy2O3 is an n-type semiconductor material, whose catalytic, luminescent, and dielectric properties have been successfully applied. However, their gas sensing properties have been significantly less studied. In this chapter, the findings from the preparation of nanostructured Dy2O3 microspheres by the coprecipitation method are presented. The characterization of a sensor device made with the as-prepared material revealed a selective response to CO and CO2. However, different physicochemical processes are involved in the detection. Even though Dy2O3 has a wide bandgap energy, a reliable and quantitative detection of these environmental gases was also observed. The gas response measured in 100 ppm of CO was 3, whereas for CO2 with the same concentration was 2.14; the response times were 30 and 16 s, respectively. Moreover, long-term stability of the Dy2O3 sensor device was observed in both gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taguchi N (1971) US Patent No. 3631436A

    Google Scholar 

  2. Web of Science (2019) Clarivate analytics. http://apps.webofknowledge.com. Accessed 14 Aug 2019

  3. Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sens Actuat B-Chem 5:7

    Article  CAS  Google Scholar 

  4. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36

    Article  CAS  Google Scholar 

  5. Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira ON, Lin L (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185:213

    Article  CAS  Google Scholar 

  6. Zhou X, Lee S, Xu Z, Yoon J (2015) Recent progress on the development of chemosensors for gases. Chem Rev 115:7944

    Article  CAS  Google Scholar 

  7. Perillo PM, Rodríguez DF (2012) The gas sensing properties at room temperature of TiO2 nanotubes by anodization. Sens Actuat B-Chem 171–172:639

    Article  CAS  Google Scholar 

  8. Adachi G, Imanaka N (1998) The binary rare earth oxides. Chem Rev 98:1479

    Article  CAS  Google Scholar 

  9. Cuif JP, Rohart E, Macaudiere P, Bauregard C, Suda E, Pacaud B, Imanaka N, Masui T, Tamura S (2004) In: Adachi G, Imanaka N, Kang ZC (eds) Binary rare Earth oxides. Kluwer Academic Publishers, Dordrecht, pp 215–255

    Google Scholar 

  10. Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Cataly Rev 38:439

    Article  CAS  Google Scholar 

  11. Gillen R, Clark SJ, Robertson J (2013) Nature of the electronic band gap in lanthanide oxides. Phys Rev B 87:125116

    Article  CAS  Google Scholar 

  12. Cherif A, Jomni S, Belgacem W, Elghoul N, Khirouni K, Beji L (2015) The temperature dependence on the electrical properties of dysprosium oxide deposited on p-Si substrate. Mat Sci Semicon Proc 29:143

    Article  CAS  Google Scholar 

  13. Xu K, Ranjith R, Laha A, Parala H, Milanov AP, Fischer RA, Bugiel E, Feydt J, Irsen S, Toader T, Bock C, Rogalla D, Osten HJ, Kunze U, Devi A (2012) Atomic layer deposition of Gd2O3 and Dy2O3: a study of the ALD characteristics and structural and electrical properties. Chem Mater 24:651

    Article  CAS  Google Scholar 

  14. Balandin AA, Tolstopyatova AA, Hsiang PP (1962) Catalytic properties of dysprosium oxide as applied to dehydrogenation and dehydration of alcohols and dehydrogenation of tetralin. Russ Chem Bull 11:909

    Article  Google Scholar 

  15. Behnamfar MT, Hadadzadeh H, Akbarnejad E, Allafchian AR, Assefi M, Khedri N (2016) Electrocatalytic reduction of CO2 to CO by Gd(III) and Dy(III) complexes; and M2O3 nanoparticles (M = Gd and Dy). J CO2 Utili 13:61

    Google Scholar 

  16. He B, Zhao L, Wang W, Chen F, Xia C (2011) Electro-catalytic activity of Dy2O3 as a solid oxide fuel cell anode material. Electrochem Comm 13:194

    Article  CAS  Google Scholar 

  17. Josephine GAS, Sivasamy A (2014) Nanocrystalline ZnO doped Dy2O3 a highly active visible photocatalyst: the role of characteristic f orbital’s of lanthanides for visible photoactivity. Appl Catal B-Environ 150–151:288

    Article  CAS  Google Scholar 

  18. Chandrasekhar M, Nagabhushana H, Sudheerkumar KH, Dhananjaya N, Sharma SC, Kavyashree D, Shivakumara C, Nagabhushana BM (2014) Comparison of structural and luminescence properties of Dy2O3 nanopowders synthesized by co-precipitation and green combustion routes. Mater Res Bull 55:237

    Article  CAS  Google Scholar 

  19. Xiao H, Li P, Jia F, Zhang L (2009) General nonaqueous sol-gel synthesis of nanostructured Sm2O3, Gd2O3, Dy2O3, and Gd2O3:Eu3+ phosphor. J Phys Chem C 113:21034

    Article  CAS  Google Scholar 

  20. Chandrasekhar M, Sunitha DV, Dhananjaya N, Nagabhushana H, Sharma SC, Nagabhushana BM, Shivakumara C, Chakradhar RPS (2012) Structural and phase dependent thermo and photoluminescent properties of Dy(OH)3 and Dy2O3 nanorods. Mater Res Bull 47:2085

    Article  CAS  Google Scholar 

  21. Zhu Y, Hai T, Ji X, Chen X, Cui S, Zhu J, Xu X, Zhao J, Xu W (2017) Highly effective upconversion broad-band luminescence and enhancement in Dy2O3/Au and Sm2O3/Au composites. J Lumin 181:352

    Article  CAS  Google Scholar 

  22. Kattel K, Park JY, Xu W, Kim HG, Lee EJ, Bony BA, Heo WC, Lee JJ, Jin S, Baeck JS, Chang Y, Kim TJ, Bae JE, Chae KS, Lee GH (2012) Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T2 MRI contrast agents. Biomaterials 33:3254

    Article  CAS  Google Scholar 

  23. Norek M, Kampert E, Zeitler U, Peters JA (2008) Tuning of the size of Dy2O3 nanoparticles for optimal performance as an MRI contrast agent. J Amer Chem Soc 130:5335

    Article  CAS  Google Scholar 

  24. Fukuma K, Torii M (2011) Geochem. Absolute calibration of low- and high-field magnetic susceptibilities using rare earth oxides. Geochem Geophy Geosy 12:1

    Google Scholar 

  25. Han K, Zhang Y, Cheng T, Fang Z, Gao M, Xu Z, Yin X (2009) Self-assembled synthesis and photoluminescence properties of uniform Dy2O3 microspheres and tripod-like structures. Mater Chem Phys 114:430

    Article  CAS  Google Scholar 

  26. Chandar NK, Jayavel R (2012) Synthesis and photoluminescence properties of HMT passivated Dy2O3 nanoparticles. Physica E 44:1315

    Article  CAS  Google Scholar 

  27. Pan TM, Lin CW (2010) Structural and sensing characteristics of Dy2O3 and Dy2TiO5 electrolyte-insulator-semiconductor pH sensors. J Phys Chem C 114:17914

    Article  CAS  Google Scholar 

  28. Yan Y, Zhao J, Lee JM (2017) Preparation of mesoporous dysprosium oxide for dynamic hydrogen peroxide detection without enzymes. ChemElectroChem 4:96

    Article  CAS  Google Scholar 

  29. Tikhonov PA, Nakusov AT, Drozdova IA (2004) Thin films of cadmium and dysprosium oxides as gas-sensitive elements of sensors. Glass Phys Chem 30:101

    Article  CAS  Google Scholar 

  30. Dong X, Cheng X, Zhang X, Sui L, Xu Y, Gao S, Zhao H, Huo L (2018) A novel coral-shaped Dy2O3 gas sensor for high sensitivity NH3 detection at room temperature. Sensor Actuat B-Chem 255:1308

    Article  CAS  Google Scholar 

  31. World Health Organization (2019) Air pollution the silent killer, Infographics. https://www.who.int/airpollution/infographics/en/. Accessed 17 May 2019

  32. Kang JG, Gwag JS, Sohn Y (2015) Synthesis and characterization of Dy(OH)3 and Dy2O3 nanorods and nanosheets. Ceram Int 41:3999

    Article  CAS  Google Scholar 

  33. Salavati-Niasari M, Javidi J, Davar F, Fazl AA (2010) Sonochemical synthesis of Dy2(CO3)3 nanoparticles and their conversion to Dy2O3 and Dy(OH)3: effects of synthesis parameters. J Alloy Compd 503:500

    Article  CAS  Google Scholar 

  34. Al-Kuhaili MF, Durrani SMA (2014) Structural and optical properties of dysprosium oxide thin films. J Alloys Compd 591:234

    Article  CAS  Google Scholar 

  35. Xu AW, Fang YP, You LP, Liu HQ (2003) A simple method to synthesize Dy(OH)3 and Dy2O3 nanotubes. J Am Chem Soc 125:1494

    Article  CAS  Google Scholar 

  36. Hussein GAM, Kroenke WJ, Goda B, Miyaji K (1997) Formation of dysprosium oxide from the thermal decomposition of hydrated dysprosium acetate and oxalate thermoanalytical and microscopic studies. J Anal Appl Pyrol 39:35

    Article  CAS  Google Scholar 

  37. Bedekar V, Chavan SV, Tyagi AK (2007) Highly sinter-active nanocrystalline RE2O3 (RE = Gd, Eu, Dy) by a combustion process, and role of oxidant-to-fuel ratio in preparing their different crystallographic modifications. J Mater Res 22:587

    Article  CAS  Google Scholar 

  38. Abu-Zied BM, Asiri AM (2014) Synthesis of Dy2O3 nanoparticles via hydroxide precipitation: effect of calcination temperature. J Rare Earth 32:259

    Article  CAS  Google Scholar 

  39. Song XC, Zheng YF, Wang Y (2008) Selected-control synthesis of dysprosium hydroxide and oxide nanorods by adjusting hydrothermal temperature. Mater Res Bull 43:1106

    Article  CAS  Google Scholar 

  40. Wang G, de Wang Z, Zhang Y, Fei G, Zhang L (2004) Controlled synthesis and characterization of large-scale, uniform Dy(OH)3 and Dy2O3 single-crystal nanorods by a hydrothermal method. Nanotechnology 15:1307

    Article  CAS  Google Scholar 

  41. Michel CR, Martínez-Preciado AH (2015) CO sensing properties of novel nanostructured La2O3 microspheres. Sensor Actuat B-Chem 208:355

    Article  CAS  Google Scholar 

  42. Michel CR, Martínez-Preciado AH (2014) CO sensor based on thick films of 3D hierarchical CeO2 architectures. Sensor Actuat B-Chem 197:177

    Article  CAS  Google Scholar 

  43. Hussein GAM, Korban H, Goda B, Miyaji K (1997) Physicochemical characterization of the formation course of dysprosium oxide from hydrated dysprosium nitrate; thermoanalytical and microscopic studies. Colloid Surface A 125:63

    Article  CAS  Google Scholar 

  44. Kim YJ, Kriven WM (1998) Crystallography and microstructural studies of phase transformations in the Dy2O3 system. J Mater Res 13:2920

    Article  CAS  Google Scholar 

  45. Ubaldini A, Carnasciali MM (2008) Raman characterisation of powder of cubic RE2O3 (RE = Nd, Gd, Dy, Tm, and Lu), Sc2O3 and Y2O3. J Alloy Compd 454:374

    Article  CAS  Google Scholar 

  46. Yu J, Cui L, He H, Yan S, Hu Y, Wu H (2014) Raman spectra of RE2O3 (RE = Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y): laser-excited luminescence and trace impurity analysis. J Rare Earth 32:1

    Article  CAS  Google Scholar 

  47. Matijevic E (1993) Preparation and properties of uniform size colloids. Chem Mater 5:412

    Article  CAS  Google Scholar 

  48. Alrammouz R, Podlecki J, Abboud P, Sorli B, Habchi R (2018) A review on flexible gas sensors: From materials to devices. Sensor Actuat A 284:209

    Article  CAS  Google Scholar 

  49. Sun C, Li K, Xue D (2019) Seaching for novel materials via 4f chemistry. J Rare Earth 37:1

    Article  CAS  Google Scholar 

  50. Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Sur Asia 7:63

    Article  CAS  Google Scholar 

  51. Mullins DR (2006) Adsorption of CO and C2H4 on Rh-loaded thin-film dysprosium oxide. Surf Sci 600:2718

    Article  CAS  Google Scholar 

  52. Geankoplis CJ (1998) Procesos de Transporte y Operaciones Unitarias, 3rd edn. CECSA, México

    Google Scholar 

  53. Henrich VE, Cox PA (1993) Fundamentals of gas-surface interactions on metal oxides. Appl Surf Sci 72:277

    Article  CAS  Google Scholar 

  54. Burghaus U (2014) Surface chemistry of CO2—adsorption of carbon dioxide on clean surfaces at ultrahigh vacuum. Prog Surf Sci 89:161

    Article  CAS  Google Scholar 

  55. Taifan W, Boily J-F, Baltrusaitis J (2016) Surface chemistry of carbon dioxide revisited. Surf Sci Rep 71:595

    Article  CAS  Google Scholar 

  56. Michel CR, Martínez-Preciado AH, Rivera-Tello CD, López E, Marañón-Ruiz VF, Rodríguez RA (2016) Response to environmental gases of BaCoO3 nanowires prepared by a microwave-assisted colloidal method. Sensor Actuat B-Chem 233:39

    Article  CAS  Google Scholar 

  57. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp, Eden Prairie

    Google Scholar 

  58. Sato S, Takahashi R, Kobune M, Gotoh H (2009) Basic properties of rare earth oxides. Appl Catal A-Gen 356:57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Coordinación General Académica of Universidad de Guadalajara, through the PRO-SNI 2018 program. M. A. Lopez-Alvarez thanks CONACYT for his Ph.D. scholarship in the CUCEI, Universidad de Guadalajara. Carlos R. Michel thanks the Profs. Carl Tripp and Robert Lad of the Laboratory for Surface Science and Technology (LASST), University of Maine, Orono, Maine, USA, for the support in the analysis of samples by Raman spectroscopy and XPS. He also thanks to Anushka Vithanage and Prof. William Gramlich of the Department of Chemistry, University of Maine for DSC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Michel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Michel, C.R., Martínez-Preciado, A.H., Lopez-Alvarez, M.A., Bernhardt, G.P., Rivera-Mayorga, J.A. (2020). Novel CO and CO2 Sensor Based on Nanostructured Dy2O3 Microspheres Synthesized by the Coprecipitation Method. In: Thomas, S., Joshi, N., Tomer, V. (eds) Functional Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-4810-9_4

Download citation

Publish with us

Policies and ethics