Skip to main content

Chemiresistors and Their Microfabrication

  • Chapter
  • First Online:
Functional Nanomaterials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 615 Accesses

Abstract

Rapid industrialization during past few decades has resulted in the emission of gases that pollute environment and pose risk to humanity. Therefore, there is a major concern for protection of the environment, in particular the air we breathe in. People, especially in urban areas, are exposed to a high quantity of toxic and harmful gases such as Cl2, NO2, NO, CO, CO2, NH3, H2S, and SO2. Thus, there is a huge demand for monitoring these hazardous gases, and hence, the need of gas sensors. Based on their detection principle, gas sensors can be classified among various types such as electrical, optical, and mass sensitive. Among the electrical ones, chemiresistive gas sensors (CGS) are widely investigated Thus, this chapter initially introduces CGS, their working and basic characteristics. The power consumption in CGS is generally high owing to their operation at higher temperatures and there have been continuous efforts to minimize it by microfabricating such sensors. Microfabrication results in low power consumption, rapid sensor heating to attain the desired operating temperature owing to lower thermal mass and fast response time of microheater. In addition, mass production owing to batch processing results in cost reduction. Therefore, in the middle part of the chapter various steps involved in microfabrication process along with the evolution of the microfabricated sensor device are outlined. Finally, in the last part, microheater characterization and H2S sensing characteristics of such microfabricated CGS along with a summary and future perspective of microfabrication in gas sensors are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aswal DK, Gupta SK (2007) Science and technology of chemiresistor gas sensors. Nova Science Publishers

    Google Scholar 

  2. Chou J (2000) Hazardous gas monitors: a practical guide to selection, operation and applications. McGraw-Hill

    Google Scholar 

  3. Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sens Actuators B: Chem 5(1):7–19

    Article  CAS  Google Scholar 

  4. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng: B 139(1):1–23

    Article  CAS  Google Scholar 

  5. Suematsu K et al (2019) Ultra-high sensitive gas detection using pulse-driven MEMS sensor based on tin dioxide. In: 2019 IEEE international symposium on olfaction and electronic nose (ISOEN)

    Google Scholar 

  6. Bagolini A et al (2019) Development of MEMS MOS gas sensors with CMOS compatible PECVD inter-metal passivation. Sens Actuators B: Chem 292:225–232

    Article  CAS  Google Scholar 

  7. Samaeifar F (2015) Implementation of high-performance MEMS platinum micro-hotplate. Sens Rev 35(1):116–124

    Article  Google Scholar 

  8. Niu G et al (2019) A micro-hotplate for MEMS-based H2S sensor. In: 2019 20th international conference on solid-state sensors, actuators and microsystems & eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)

    Google Scholar 

  9. Graf M et al (2006) Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films. J Nanopart Res 8(6):823–839

    Article  CAS  Google Scholar 

  10. Neri G, Donato N. Resistive gas sensors. In: Wiley encyclopedia of electrical and electronics engineering, pp 1–12

    Google Scholar 

  11. Balouria V et al (2013) Chemiresistive gas sensing properties of nanocrystalline Co3O4 thin films. Sens Actuators B: Chem 176:38–45

    Article  CAS  Google Scholar 

  12. Baloria V (2015) Transition Metal oxides for gas sensing applications. Ph.D. Thesis Physics. Guru Nanak Dev University, Amritsar

    Google Scholar 

  13. Vancu A, Ionescu RA, Barsan N (1992) Chemoresistive gas sensors. In: Middelhoek PCAS (ed) Thin film resistive sensors. Institute of Physics Publishing

    Google Scholar 

  14. Balouria V et al (2013) Nano-crystalline Fe2O3 thin films for ppm level detection of H2S. Sens Actuators B: Chem 181:471–478

    Article  CAS  Google Scholar 

  15. Balouria V et al (2011) Temperature dependent H2S and Cl2 sensing selectivity of Cr2O3 thin films. Sens Actuators B: Chem 157(2):466–472

    Article  CAS  Google Scholar 

  16. Williams DE (1999) Semiconducting oxides as gas-sensitive resistors. Sens Actuators B: Chem 57(1):1–16

    Article  CAS  Google Scholar 

  17. Li Z et al (2019) Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater Horiz 6(3):470–506

    Article  CAS  Google Scholar 

  18. Amico AD, Natale CD (2001) A contribution on some basic definitions of sensors properties. IEEE Sens J 1(3):183–190

    Article  Google Scholar 

  19. Tsiulyanu D et al (2005) Characterization of tellurium-based films for NO2 detection. Thin Solid Films 485(1):252–256

    Article  CAS  Google Scholar 

  20. Korotcenkov G, Cho BK (2011) Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey). Sens Actuators B: Chem 156(2):527–538

    Article  CAS  Google Scholar 

  21. Seiyama T et al (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem 34(11):1502–1503

    Article  CAS  Google Scholar 

  22. Ihokura K, Watson J (2017) The stannic oxide gas sensor principles and applications. CRC press

    Google Scholar 

  23. Panchapakesan B et al (2001) Nanoparticle engineering and control of tin oxide microstructures for chemical microsensor applications. Nanotechnology 12(3):336–349

    Article  CAS  Google Scholar 

  24. Eranna G et al (2004) Oxide materials for development of integrated gas sensors—a comprehensive review. Crit Rev Solid State Mater Sci 29(3–4):111–188

    Article  CAS  Google Scholar 

  25. Balouria V et al (2015) Enhanced H2S sensing characteristics of Au modified Fe2O3 thin films. Sens Actuators B: Chem 219:125–132

    Article  CAS  Google Scholar 

  26. Hotovy I et al (2002) Sensing characteristics of NiO thin films as NO2 gas sensor. Thin Solid Films 418(1):9–15

    Article  CAS  Google Scholar 

  27. Mutschall D, Holzner K, Obermeier E (1996) Sputtered molybdenum oxide thin films for NH3 detection. Sens Actuators B: Chem 36(1):320–324

    Article  CAS  Google Scholar 

  28. Fleischer M et al (2000) Selective gas detection with high-temperature operated metal oxides using catalytic filters. Sens Actuators B: Chem 69(1):205–210

    Article  CAS  Google Scholar 

  29. Liu J et al (2006) Preparation and gas sensing properties of vanadium oxide nanobelts coated with semiconductor oxides. Sens Actuators B: Chem 115(1):481–487

    Article  CAS  Google Scholar 

  30. Zhang Y, Zeng W, Li Y (2019) New insight into gas sensing performance of nanorods assembled and nanosheets assembled hierarchical WO3·H2O structures. Mater Lett 235:49–52

    Article  CAS  Google Scholar 

  31. Bouvet M et al (2019) A tungsten oxide–lutetium bisphthalocyanine n–p–n heterojunction: from nanomaterials to a new transducer for chemo-sensing. J Mater Chem C 7(21):6448–6455

    Article  CAS  Google Scholar 

  32. Guo S et al (2019) Sensors: development of a cloud-based epidermal MoSe2 device for hazardous gas sensing. Adv Funct Mater 29(18):1970122

    Google Scholar 

  33. Smiy S et al (2019) New perovskite compound La0.885Pb0.005Ca0.11FeO2.95 for gas sensing application. Chem Phys Lett 735:136765

    Google Scholar 

  34. Ji H, Zeng W, Li Y (2019) Assembly of 2D nanosheets into flower-like MoO3: new insight into the petal thickness affect on gas-sensing properties. Mater Res Bull 118:110476

    Article  CAS  Google Scholar 

  35. Nourbakhsh A et al (2019) Heterogeneous integration of 2D materials and devices on a Si platform. In: Topaloglu RO, Wong HSP (eds) Beyond-CMOS technologies for next generation computer design. Springer International Publishing, Cham, pp 43–84

    Google Scholar 

  36. Song H et al (2019) 3D α-Fe2O3 nanorods arrays@graphene oxide nanosheets as sensing materials for improved gas sensitivity. Chem Eng J 370:1331–1340

    Article  CAS  Google Scholar 

  37. Patil SS, Jha PK (2014) Synthesis & study of properties of doped ZnO pellets for gas sensing application. Adv Mater Res 1047:99–105

    Article  CAS  Google Scholar 

  38. Chiba A (1992) Development of the TGS gas sensor. In: Yamauchi S (ed) Chemical sensor technology. Elsevier, Amsterdam, pp 1–18

    Google Scholar 

  39. Korotcenkov G, Cho BK (2009) Thin film SnO2-based gas sensors: film thickness influence. Sens Actuators B: Chem 142(1):321–330

    Article  CAS  Google Scholar 

  40. Sun Y-F et al (2012) Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3):2610–2631

    Article  CAS  Google Scholar 

  41. Ramgir NS, Yang Y, Zacharias M (2010) Nanowire-based sensors. Small 6(16):1705–1722

    Article  CAS  Google Scholar 

  42. Galán-Vidal CA et al (1995) Chemical sensors, biosensors and thick-film technology. TrAC Trends Anal Chem 14(5):225–231

    Article  Google Scholar 

  43. Xu L et al (2015) Micro/nano gas sensors: a new strategy towards in-situ wafer-level fabrication of high-performance gas sensing chips. Sci Rep 5:10507

    Article  Google Scholar 

  44. Bhattacharyya P (2014) Technological journey towards reliable microheater development for MEMS gas sensors: a review. IEEE Trans Device Mater Reliab 14(2):589–599

    Article  CAS  Google Scholar 

  45. Soman R (2013) Metal oxide gas sensor for environmental monitoring. ME report. Indian Institute of Science Bangalore, Bengaluru

    Google Scholar 

  46. Ho PS, Kwok T (1989) Electromigration in metals. Rep Prog Phys 52(3):301–348

    Article  CAS  Google Scholar 

  47. Filipovic L, Selberherr S (2019) Thermo-electro-mechanical simulation of semiconductor metal oxide gas sensors. Materials 12(15):2410

    Article  CAS  Google Scholar 

  48. Xu L, Li T, Wang Y (2011) A novel three-dimensional microheater. IEEE Electron Device Lett 32(9):1284–1286

    Article  Google Scholar 

  49. Li T, Xu L, Wang Y (2018) Micro-heater-based gas sensors. In: Huang Q-A (ed) Micro electro mechanical systems. Springer Singapore, Singapore, pp 717–752

    Google Scholar 

  50. Xu L et al (2012) A high-performance three-dimensional microheater-based catalytic gas sensor. IEEE Electron Device Lett 33(2):284–286

    Article  CAS  Google Scholar 

  51. Mele L et al (2011) Electro-thermal analysis of MEMS microhotplates for the optimization of temperature uniformity. Procedia Eng 25:387–390

    Article  Google Scholar 

  52. Khan U, Falconi C (2013) Micro-hot-plates without simply connected hot-spots and with almost-circular temperature distribution. Sens Actuators B: Chem 185:274–281

    Article  CAS  Google Scholar 

  53. Courbat J, Briand D, de Rooij NF (2008) Reliability improvement of suspended platinum-based micro-heating elements. Sens Actuators A: Phys 142(1):284–291

    Article  CAS  Google Scholar 

  54. Rudraswamy SB (2014) Design, fabrication and development of metal oxide semiconductor based gas sensor system for CO2 monitoring. Electrical communication engineering. Indian Institute of Science Bangalore, Bengaluru

    Google Scholar 

  55. Filipovic L, Selberherr S (2015) Performance and stress analysis of metal oxide films for CMOS-integrated gas sensors. Sensors 15(4):7206–7227

    Article  CAS  Google Scholar 

  56. Lee D-D et al (1996) Low-power micro gas sensor. Sens Actuators B: Chem 33(1):147–150

    Article  CAS  Google Scholar 

  57. Yamazoe N, Shimanoe K (2009) New perspectives of gas sensor technology. Sens Actuators B: Chem 138(1):100–107

    Article  CAS  Google Scholar 

  58. Simon I et al (2001) Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sens Actuators B: Chem 73(1):1–26

    Article  CAS  Google Scholar 

  59. Ehmann M et al (2001) Operation and short-term drift of polysilicon-heated CMOS microstructures at temperatures up to 1200 K. J Micromech Microeng 11(4):397–401

    Article  Google Scholar 

  60. Spannhake J et al (2006) High-temperature MEMS heater platforms: long-term performance of metal and semiconductor heater materials. Sensors 6(4):405–419

    Article  Google Scholar 

  61. Courbat J et al (2008) Thermal simulation and characterization for the design of ultra-low power micro-hotplates on flexible substrate. In: 2008 IEEE sensors

    Google Scholar 

  62. Iwaki T et al (2005) Design and simulation of resistive SOI CMOS micro-heaters for high temperature gas sensors. J Phys: Conf Ser 15:27–32

    Google Scholar 

  63. Prajapati CS et al (2017) Single chip gas sensor array for air quality monitoring. J Microelectromech Syst 26(2):433–439

    Article  CAS  Google Scholar 

  64. Prajapati CS, Bhat N (2019) Highly sensitive CO sensor based on thickness-selective ZnO thin film: device fabrication and packaging. Cryst Res Technol 54(4):1800241

    Article  CAS  Google Scholar 

  65. Mallires KR et al (2019) Developing a low-cost wearable personal exposure monitor for studying respiratory diseases using metal-oxide sensors. IEEE Sens J 19(18):8252–8261

    Article  CAS  Google Scholar 

  66. Mamun MAA, Yuce MR (2019) Sensors and systems for wearable environmental monitoring toward IoT-enabled applications: a review. IEEE Sens J 19(18):7771–7788

    Article  Google Scholar 

  67. Chandra Shekhar P, Samatha B, Navakanta B (2019) Ultralow power nanosensor array for selective detection of air pollutants. Nanotechnology

    Google Scholar 

  68. Nazemi H et al (2019) Advanced micro- and nano-gas sensor technology: a review. Sensors 19(6):1285

    Article  CAS  Google Scholar 

  69. Comini E, Zappa D (2020) Chapter Five—One- and two-dimensional metal oxide nanostructures for chemical sensing. In: Jaaniso R, Tan OK (eds) Semiconductor gas sensors, 2nd edn. Woodhead Publishing, pp 161–184

    Google Scholar 

  70. Zhang J, Liu X (2019) One-dimensional nanowire-based heterostructures for gas sensors. In: Shen G, Chueh Y-L (eds) Nanowire electronics. Springer Singapore, Singapore, pp 201–235

    Google Scholar 

  71. Han Y et al (2019) Interface engineered WS2/ZnS heterostructures for sensitive and reversible NO2 room temperature sensing. Sens Actuators B: Chem 296:126666

    Article  CAS  Google Scholar 

  72. Topalović DB et al (2019) In search of an optimal in-field calibration method of low-cost gas sensors for ambient air pollutants: comparison of linear, multilinear and artificial neural network approaches. Atmos Environ 213:640–658

    Article  CAS  Google Scholar 

Download references

Acknowledgements

V.B. would like to acknowledge the Director, CSIR-NPL India, for his support and encouragement. V.B. also acknowledges DST for the Inspire Faculty award vide Letter No. DST/INSPIRE/04/2016/000690. V.B. thankfully acknowledges the technical support and training provided by staff at National Nanofabrication Centre (NNFC), Micro and Nano Characterization Facility (MNCF) at the Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore, India during his initial years of device fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Baloria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baloria, V., Prajapati, C.S., Bhat, N., Gupta, G. (2020). Chemiresistors and Their Microfabrication. In: Thomas, S., Joshi, N., Tomer, V. (eds) Functional Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-4810-9_3

Download citation

Publish with us

Policies and ethics