Skip to main content

Conducting Polymer Nanocomposite-Based Gas Sensors

  • Chapter
  • First Online:
Functional Nanomaterials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Conducting polymers (CP) can behave like metals or semiconductors by incorporation of additives to tailor structure, crystallinity, and morphology. The emergence of nanoscience has provided impetus to the possibility of using electrically conducting polymers in various applications as in electrochromic devices, chemical and biological sensors, transparent conducting materials, batteries, actuators, field emission displays, super-capacitors, photovoltaic cells, data storage, and for surface protection. The chapter begins with the discussion of various aspects of gas sensors, fabricated using conducting polymers such as polyaniline (PANI), polypyrrole (PPy), polythiophene, and poly (3,4-ethylenedioxythiophene) (PEDOT) and their hybrids with metal, metal oxide nanostructures and nanocarbons (reduced graphene oxide (rGO), carbon nanotubes (CNTs)) heterogenous species as the active layers. The fabrication of CP for different gas sensor applications, the sensing mechanism, and the configurations are also discussed in this chapter. The CP hybrid composites with enhanced sensing capabilities toward chemical gases, as chemoelectrical sensors, are due to their improved charge transport and charge transfer properties, through redox chemical reactions. Moreover, the CP hybrids with other materials provide synergistic properties, such as target analyte specificity, environmental/room temperature stability, ease of fabrication, signal reproducibility, and enhanced sensitivity. The factors that affect the gas sensors, brief prospects and future challenges in this field of research are discussed at the end of the chapter. The current trends and novel approaches to process materials with desirable physicochemical properties and fine-tuning the property of new materials for target specificity are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shirakawa H, Ikeda S (1971) Polym J 2:231

    Article  CAS  Google Scholar 

  2. Shirakawa H et al (1977) Electrical conductivity in doped Polyacetylene. Phys Rev Lett 39:1098–1101

    Google Scholar 

  3. Aldissi M (1984) Review of the synthesis of polyacetylene and its stabilization to ambient atmosphere. Synth Met 9:131–141

    Google Scholar 

  4. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers; halogen derivatives of polyacetylene (CH)x. J Chem Commun 578–580

    Google Scholar 

  5. Heeger AJ et al (1988) Solitons in conducting polymers. Rev. Mod. Phy. 60:781

    Article  CAS  Google Scholar 

  6. MacDiarmid AG (2001) Synthetic metals; a novel role for organic polymers (Nobel Lecture). Angew Chem Int Ed 40:2581–2590

    Google Scholar 

  7. Skottheim TA, Lelsenbaumer R, Reynolds JR (eds) (2006) Handbook of conducting polymers, conjugated polymers: processing and applications, 3rd edn. CRS Press

    Google Scholar 

  8. Skottheim TA (1986) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  9. Yang CH, Wen TC (1998) Electrochim Acta 44:207

    Article  CAS  Google Scholar 

  10. Shirakawa H, Chiang CK, Fincher CR, Park YW, MacDiarmid AG et al (1977) Electrical conductivity in doped Polyacetylene. Phys Rev Lett 39:1098–1101

    Google Scholar 

  11. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Chem Soc Chem Commun 578

    Google Scholar 

  12. Somani P, Mandale AB, Radhakrishnan S (2000) Study and development of conducting polymer-based electrochromic display devices. Acta Materil 48:2859–2871;Guerfi A, Trottier J, Boyano I, Meatza ID, Blazquez JA, Brewer S, Ryder KS, Vijh A, Zaghib K (2014) High cycling stability of zinc-anode/conducting polymer rechargeable battery with nonaqueous electrolyte. J Power Source 248:1099–1104;Duan L, Lu J, Liu W, Huang P, Wang W, Liu Z (2012) Fabrication of conductive polymer-coated sulfur composite cathode materials based on layer-by-layer assembly for rechargeable lithium-sulphur batteries. Colloids Surf A 414:98–103

    Google Scholar 

  13. Xia L, Wei Z, Wan M (2010) Conducting polymer nanostructures and their application in biosensors. J Colloid Interface Sci 341:1–11

    Article  CAS  Google Scholar 

  14. Ates M (2016) A review on conducting polymer coatings for corrosion protection. J Adhes Sci Technol 30(14):1510–1536;Rohwerder M, Michalik A (2007) Electrochimica Acta 53(3):1300–1313

    Google Scholar 

  15. Janata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors, Progress Article. Nat Mater 2:19–24

    Article  CAS  Google Scholar 

  16. Alshalhi MS et al (2011) Int J Mo Sci 12(3):20136

    Google Scholar 

  17. Sirringhaus H (2005) Device Physics of Solution-Processed Organic Field-Effect Transistors. Adv Mater 17(20):2411–2425

    Article  CAS  Google Scholar 

  18. Biju P, Jining X, Jose KA, Vijay KV (2004) A new synthetic route to enhance polyaniline assembly on carbon nanotubes in tubular composites. Smart Mater Struct 13:N105

    Article  CAS  Google Scholar 

  19. Ginic-Markovic M et al (2006) Synthesis of new polyaniline/nanotube composites using ultrasonically initiated emulsion polymerization. Chem Mater 18(26):6258–6265

    Google Scholar 

  20. Le T, Kim Y, Yoon H (2017) Electrical and electrochemical properties of conducting polymers. Polymers 9:150

    Article  CAS  Google Scholar 

  21. Tahir ZM, Alocilijaa EC, Groomsby DL (2005) Biosens Bioelectron 20:1690

    Article  CAS  Google Scholar 

  22. Flory PJ (1953) Principles of polymer chemistry, 1st edn. Cornell University. https://polymerdatabase.com; van Krevelen DW, Nijenhuis K (2009) Properties of polymers, 4th edn. Amsterdam; Strobl GR (2007) The physics of polymers, 1st edn. Springer Berlin, Heidelberg; Gennes P-G (1979) Scaling concepts in polymer physics, 1st edn. Cornell University; Porter D (1995) Group interaction modelling of polymer properties. Marcel Dekker, New York; Belfiore LA (2010) Physical properties of macromolecules, 1st edn. Wiley, Singapore; Mark JE (1998) Polymer data handbook, 1st edn. Springer, Oxford; Juelich F (1991) Physik der Polymer, ForschungszentrumJuelich GmbH; Rubinstein M, Colby R (2003) Polymer physics, 1st edn. Oxford University Press, New York; Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New York; https://polymerdatabase.com, copyright @ June 24, 2017; Revised July 12, 2019 https://sg.inflibnet.ac.in, copyright@2015

  23. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) J Chem Soc Chem Comm 579

    Google Scholar 

  24. Banerjee S (2013) Synthesis swift heavy ion irradiation and characterization conducting polymer based nanostructured materials for biomedical and sensor applications (Thesis). http://hdl.handle.net/10603/9003

  25. Dai L (1980) Intelligent macromolecules for smart devices—from materials synthesis to device applications. 1975:1–41

    Google Scholar 

  26. Nguyen TA (2002) Design, development and utilization of conducting polymer sensors (Thesis), University of Wollongong

    Google Scholar 

  27. Nylabder C, Armgrath M, Lundstrom I (1983) An ammonia detector based on a conducting polymer. In: Proceedings of the international meeting on chemical sensors, Fukuoka, Japan, pp 203–207

    Google Scholar 

  28. Bai H, Shi G (2007) Gas sensors based on conducting polymers: review. Sensors 7:267–307

    Article  CAS  Google Scholar 

  29. Meer S, Kausar A, Iqbal T (2016) Trends in conducting polymer and hybrids of conducting polymer/carbon nanotube: a review. Polym-Plast Technol Eng 55(13):1416–1440

    Article  CAS  Google Scholar 

  30. Yoon H (2013) Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 3:524–549

    Article  CAS  Google Scholar 

  31. Kwon OS, Park CS, Park SJ, Noh S, Kim S, Kong HJ, Bae J, Lee C-S, Yoon H (2016) Carboxylic acid-functionalized conducting-polymer nanotubes as highly sensitive nerve-agent chemiresistors. Sci Rep 6:33724

    Article  CAS  Google Scholar 

  32. Park CS, Lee C, Kwon OS (2016) Conducting polymer-based Nano biosensors. Polymers 8:249

    Article  CAS  Google Scholar 

  33. Park SJ, Kwon OS, Lee JE, Jang J, Yoon H (2014) Conducting polymer-based nanohybrid transducers: a potential route to high sensitivity and selectivity sensors. Sensors 14:3604–3630

    Article  CAS  Google Scholar 

  34. Weathers A et al (2015) Significant electronic thermal transport in the conducting polymer poly(3,4-ethylenedioxythiophene). Adv Mater 27:2101–2106

    Google Scholar 

  35. Chapter—Polyaniline: synthesis methods, doping and conduction mechanism. http://dx.doi.org/10.5772/intechopen.79089

  36. Epstein AJ et al (1987) Insulator to-metal transition in polyaniline. Synth Met 18:303–309

    Article  CAS  Google Scholar 

  37. Neoh KG et al (1995) Polyaniline treated with organic acids: doping characteristics and stability. Synth Met 73:209–215

    Article  CAS  Google Scholar 

  38. Yoon H et al (2007) J. Formation of 1D poly(3,4-ethylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors. Adv Funct Mater 17:431–436

    Google Scholar 

  39. Zhang XT, Zhang J, Song WH, Liu ZF (2006) Controllable synthesis of conducting polypyrrole nanostructures. J Phys Chem B 110:1158–1165

    Article  CAS  Google Scholar 

  40. Jang J, Yoon H (2005) Formation mechanism of conducting polypyrrole nanotubes in reverse micelle systems. Langmuir 21:11484–11489

    Article  CAS  Google Scholar 

  41. Jang J, Yoon H (2003) Facile fabrication of polypyrrole nanotubes using reverse microemulsion polymerization. Chem Commun 720–721. https://doi.org/10.1039/b211716a

  42. Zhang XY, Manohar SK (2005) Narrow pore-diameter polypyrrole nanotubes. J Am Chem Soc 127:14156–14157

    Article  CAS  Google Scholar 

  43. Xiao R, Cho SI, Liu R, Lee SB (2007) Controlled electrochemical synthesis of conductive polymer nanotube structures. J Am Chem Soc 129:4483–4489

    Article  CAS  Google Scholar 

  44. Zhang XY, Goux WJ, Manohar SK (2004) Synthesis of polyaniline nanofibers by “nanofiber seeding”. J Am Chem Soc 126:4502–4503; Laforgue A, Robitaille L (2010) Deposition of ultrathin coatings of polypyrrole and poly(3,4-ethylenedioxythiophene) onto electrospun nanofibers using a vapor-phase polymerization method. Chem Mater 22:2474–2480; Lia Z-F et al (2008) One step fabrication of a polyaniline nanofiber vapor sensor. Sens Actuators B 134:31–35

    Google Scholar 

  45. Hong JY, Yoon H, Jang J (2010) Kinetic study of the formation of polypyrrole nanoparticles in water-soluble polymer/metal cation systems: a light-scattering analysis. Small 6:679–686

    Article  CAS  Google Scholar 

  46. Han MG, Foulger SH (2005) 1-dimensional structures of poly(3,4-ethylenedioxythiophene) (PEDOT): a chemical route to tubes, rods, thimbles, and belts. Chem Commun 24:3092–3094

    Article  CAS  Google Scholar 

  47. Kanicki J (1986) Hand book of conducting polymer, vol 1. Dekkker, New York, p 543

    Google Scholar 

  48. Sharma S, Hussain S, Singh S, Islam SS (2014) MWCNT-conducting polymer composite based ammonia gas sensors: a new approach for complete recovery process. Sens Actuator B Chem 194:213–219

    Article  CAS  Google Scholar 

  49. Agbor NE, Petty MC, Monkman P (1995) Polyaniline thin films for gas sensing. Sens Actuators B Chem 173–179

    Google Scholar 

  50. Chiang CJ et al (2013) In situ fabrication of conducting polymer composite film as a chemical resistive CO2 gas sensor. Microelectron Eng 111:409–415

    Google Scholar 

  51. Kim SY, Palmore GTR (2012) Electropolymerization vs Electrocrystallization: electrosynthesis of poly(3,4-ethylenedioxythiophene) in the presence of 2,2’-azino-bis (3-ethylbenzothiaxoline-6-sulfonic acid). Electrochim Acta 77:184–188]

    Google Scholar 

  52. Yoon H, Jang J (2009) Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges. Adv Funct Mater 19:1567–1576

    Article  CAS  Google Scholar 

  53. Jang DH, Wang YY (2006) Mat Sci Eng B 134:9–19; Janata J, Josowicz M (2003) Nat Mater 2:19–24; Huang J, Virji S, Weiller BH, Kaner RB (2004) Chem Eur J 10:1314-1319; Huang J, Virji S, Weiller BH, Kaner RB (2003) J Am Chem Soc 125:314–315

    Google Scholar 

  54. Yoon H, Choi MJ, Lee KA, Jang JS (2008) Versatile strategies for fabricating polymer nanomaterials with controlled size and morphology. Macromol Res 16:85–102

    Article  CAS  Google Scholar 

  55. Xu J, Jiang Y, Yang Y, Yu J (2009) Mater Sci Eng B 157:87–92

    Google Scholar 

  56. Daham SJ (1997) Ph.D. Dissertation, University of California, Santa Barbara; Chein CW (1984) Academic Press, New York; Maiti S (1986) J Sci Ind Res 12:179; Frommer JE, Chance RR (1986) In: Kroschwitz JI, Wiley, New York, p 462; Lewis TJ (1989) Faraday Discuss. Chem Soc 88:189

    Google Scholar 

  57. Chandrasekhar P (1999) Conducting polymers, fundamentals and applications: a practical approach. Kluwer Academic Publishers, Boston; Rao PS, Sathyanarayana DS, Jeevananda T (2001) In advanced functional molecules and polymers, vol 3. Gordon and Breach, Tokyo, p 79; Salaneck WR, Seki K, Kohn A, Pireaux JJ (2002) Conjugated polymers and molecular interfaces. Marcel Dekker Inc., US

    Google Scholar 

  58. Bhat NV, Gadre AP, Bambole VA (2001) Structural, mechanical, and electrical properties of electropolymerized polypyrrole composite films. J Appl Polym Sci 80:2511–2517; Yoon H, Chang M, Jang J (2006) Sensing behaviors of polypyrrole nanotubes prepared in reverse microemulsions: effects of transducer size and transduction mechanism. J Phys Chem B 110:14074–14077; Dixit V, Misra SCK, Sharma BS (2005) Carbon monoxide sensitivity of vacuum deposited polyaniline semiconducting thin films. Sens Actuators B 104:90–93; Densakulprasert N et al (2005) Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO. Mater Sci Eng B-Solid State Mater Adv Technol 117:276–282

    Google Scholar 

  59. Misra SCK, Mathur P, Srivastava BK (2004) Vacuum-deposited nanocrystalline polyaniline thin film sensors for detection of carbon monoxide. Sens Actuators, A 114:30–35

    Article  CAS  Google Scholar 

  60. Watcharaphalakorn S et al (2005) Polyaniline/polyimide blends as gas sensors and electrical conductivity response to CO-N2 mixtures. Polym Int 54:1126–1133

    Article  CAS  Google Scholar 

  61. Athawale AA, Bhagwat SV, Katre PP (2006) Nanocomposite of Pd-polyaniline as a selective methanol sensor. Sens Actuators, B 114:263–267

    Article  CAS  Google Scholar 

  62. Gardner JW, Bartlett PN, Pratt KFE (1995) Modeling of gas-sensitive conducting polymer devices. IEEE Proc-Circ Devices Syst 142:321–333

    Article  Google Scholar 

  63. Segal E, Tchoudakov R, Narkis M, Siegmann A (2002) Thermoplastic polyurethane-carbon black compounds: structure, electrical conductivity and sensing of liquids. Polym Eng Sci 42:2430–2439

    Article  CAS  Google Scholar 

  64. Segal E, Tchoudakov R, Narkis M, Siegmann A, Wei Y (2005) Polystyrene/polyaniline nanoblends for sensing of aliphatic alcohols. Sens Actuators, B 104:140–150

    Article  CAS  Google Scholar 

  65. Hao QL, Kulikov V, Mirsky VA (2003) Investigation of contact and bulk resistance of conducting polymers by simultaneous two- and four-point technique. Sens Actuators, B 94:352–357

    Article  CAS  Google Scholar 

  66. Krondak M et al (2006) Chemosensitive properties of poly-4,4’-dialkoxy-2,2’-bipyrroles. J Solid State Electrochem 10:185–191

    Article  CAS  Google Scholar 

  67. Harris PD, Arnold WM, Andrews MK, Partridge AC (1997) Resistance characteristics of conducting polymer films used in gas sensors. Sens Actuators B 42:177–184; Musio F, Amrani MEH, Persaud KC (1995) High-frequency AC investigation of conducting polymer gas sensors. Sens Actuators B 23:223–226; Krivan E, Visy C, Dobay R, Harsanyi G, Berkesi O (2000) Irregular response of the polypyrrole films to H2S. Electroanalysis 12:1195–1200

    Google Scholar 

  68. Tuyen LTT, PotjeKamloth K, Liess HD (1997) Electrical properties of doped polypyrrole/silicon heterojunction diodes and their response to NOx gas. Thin Solid Films 292:293–298

    Article  CAS  Google Scholar 

  69. Laranjeira JMG, Khoury HJ, de Azevedo WM, da Silva EF, de Vasconcelos EA (2002) Fabrication of high-quality silicon-polyaniline heterojunctions. Appl Surf Sci 190:390–394. https://en.wikipedia.org/wiki/Diode#Types_of_semiconductor_diodeCC BY-SA 3.0 File: Dioden2.jpg, Created: 24 September 2007

  70. Hu H et al (2002) Adsorption kinetics of opto-chemical NH3 gas sensing with semiconductor polyaniline films. Sens Actuators, B 82:14–23

    Article  CAS  Google Scholar 

  71. Lee YS, Joo BS, Choi NJ, Lim JO, Huh JS, Lee DD (2003) Visible optical sensing of ammonia based on polyaniline film. Sens Actuators, B 93:148–152

    Article  CAS  Google Scholar 

  72. Inaoka S, Collard DM (1999) Chemical and electrochemical polymerization of 3-alkylthiophenes on self-assembled monolayers of oligothiophene-substituted alkyl silanes. Langmuir 15:3752–3758

    Article  CAS  Google Scholar 

  73. Gallazzi et al (2003) Poly(alkoxy-bithiophenes) sensors for organic vapours. Sens Actuators B 88:178–189

    Google Scholar 

  74. Yuan JM, El-Sherif MA (2003) Fiber-optic chemical sensor using polyaniline as modified cladding material. IEEE Sens J 3:5–12; Cao WQ, Duan YX (2005) Optical fiber-based evanescent ammonia sensor. Sens Actuators B 110:252–259

    Google Scholar 

  75. Bansal L, El-Sherif M (2005) Intrinsic optical-fiber sensor for nerve agent sensing. IEEE Sens J 5:648–655

    Article  CAS  Google Scholar 

  76. Agbor NE, Cresswell JP, Petty MC, Monkman AP (1997) An optical gas sensor based on polyaniline Langmuir-Blodgett films. Sens Actuators, B 41:137–141

    Article  CAS  Google Scholar 

  77. Airoudj A, Debarnot D, Beche B, Poncin-Epaillard F (2008) Design and sensing properties of an integrated optical gas sensor based on a multilayer structure. Anal Chem 80:9188–9194

    Article  CAS  Google Scholar 

  78. Chang SM, Muramatsu H, Nakamura C, Miyake J (2000) The principle and applications of piezoelectric crystal sensors. Mater Sci Eng C-Biomimetic Supramol Syst 12:111–123

    Article  Google Scholar 

  79. Virji S, Kaner RB, Weiller BH (2006) Hydrogen sensors based on conductivity changes in polyaniline nanofibers. J Phys Chem B 110:22266–22270

    Article  CAS  Google Scholar 

  80. Umana M, Waller J (1986) Protein modified electrodes: the glucose oxidase/polypyrrole system. Anal Chem 58:2979–2983

    Article  CAS  Google Scholar 

  81. Do JS, Chang WB (2001) Amperometric nitrogen dioxide gas sensor: preparation of PAn/Au/SPE and sensing behavior. Sens Actuators B 72:101–107; Diab N, Schuhmann W (2001) Electropolymerized manganese porphyrin/polypyrrole films as catalytic surfaces for the oxidation of nitric oxide. Electrochim Acta 47:265–273; Liu YC, Hwang BJ, Hsu WC (2002) Characteristics of Pd/Nafion oxygen sensor modified with polypyrrole by chemical vapor deposition. J Solid State Electrochem 6:351–356

    Google Scholar 

  82. Li B, Sauve G, Iovu MC, Jeffries-El M, Zhang R, Cooper J, Santhanam S, Schultz L, Revelli JC, Kusne AG, Kowalewski T, Snyder JL, Weiss LE, Fedder GK, McCullough RD, Lambeth DN (2006) Volatile organic compound detection using nanostructured copolymers. Nano Lett 6:1598–1602

    Article  CAS  Google Scholar 

  83. Torsi L, Tanese MC, Cioffi N, Gallazzi MC, Sabbatini L, Zambonin PG, Raos G, Meille SV, Giangregorio MM (2003) Side-chain role in chemically sensing conducting polymer field effect transistors. J Phys Chem B 107:7589–7594

    Article  CAS  Google Scholar 

  84. Chabukswar VV, Pethkar S, Athawale AA (2001) Acrylic acid doped polyaniline as an ammonia sensor. Sens Actuators, B 77:657–663

    Article  CAS  Google Scholar 

  85. Brie M et al (1996) The effect of initial conductivity and doping anions on gas sensitivity of conducting polypyrrole films to NH3. Sens Actuators, B 37:119–122

    Article  CAS  Google Scholar 

  86. De Souza JEG, dos Santos FL, Barros-Neto B, dos Santos CG, de Melo CP (2001) Polypyrrole thin films gas sensors. Synth Met 119:383–384

    Article  Google Scholar 

  87. Milella E, Musio F, Alba MB (1996) Polypyrrole LB multilayer sensitive films for odorants. Thin Solid Films 285:908–910

    Article  Google Scholar 

  88. Dong B, Krutschke M, Zhang X, Chi LF, Fuchs H (2005) Fabrication of polypyrrole wires between microelectrodes. Small 1:520–524; Dong B, Zhong DY, Chi LF, Fuchs H (2005) Patterning of conducting polymers based on a random copolymer strategy: toward the facile fabrication of nanosensors exclusively based on polymers. Adv Mater 17:2736–2741

    Google Scholar 

  89. Xie D, Jiang YD, Pan W, Li D, Wu ZM, Li YR (2002) Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology. Sens Actuators, B 81:158–164

    Article  CAS  Google Scholar 

  90. Chen YJ, Kang ET, Neoh KG, Tan KL (2001) Oxidative graft polymerization of aniline on modified Si (100) surface. Macromolecules 34:3133–3141

    Article  CAS  Google Scholar 

  91. Jun HK, Hoh YS, Lee BS, Lee ST, Lim JO, Lee DD, Huh JS (2003) Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions. Sens Actuators, B 96:576–581

    Article  CAS  Google Scholar 

  92. Dubbe A (2003) Fundamentals of solid state ionic micro gas sensors. Sens Actuators B 88:138–148; Zakrzewska K (2001) Mixed oxides as gas sensors. Thin Solid Films 391:229–238

    Google Scholar 

  93. Wang C et al (2010) Review metal oxide gas sensors: sensitivity and influencing factors. Sensors 10:2088–2106; Zakrzewska K (2001) Mixed oxides as gas sensors. Thin Solid Films 391:229–238

    Google Scholar 

  94. Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B 121:18–35

    Article  CAS  Google Scholar 

  95. Iqbal S, Ahmad S (2018) Recent developments in hybrid conducting polymers: synthesis, applications and future prospects. J Ind Eng Chem 60:53–84

    Article  CAS  Google Scholar 

  96. Kwak D, Leic Y, Mari R (2019) Ammonia gas sensors: a comprehensive review. Talanta 204:713–730

    Google Scholar 

  97. Zhang D, Wu J, Cao Y (2019) MOX sensors—ultrasensitive H2S gas detection at room temperature based on copper oxide/molybdenum disulfide nanocomposite with synergistic effect. Sens Actuators: B Chem 287:346–355

    Article  CAS  Google Scholar 

  98. Wang L et al (2014) Enhanced sensitivity and stability of room-temperature NH3 sensors using core-shell CeO2 nanoparticles @cross-linked PANI with p-n heterojunctions. ACS Appl Mater Interfaces 6:14131–14140; Sharma S et al (2002) Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens Actuators B Chem 85:131–136

    Google Scholar 

  99. da Silva CTP et al (2016) One step electrochemical synthesis of polyaniline/metallic oxide nanoparticle (gamma-Fe2O3) thin film. Int J Electochem Sci 11:5380–5394

    Article  CAS  Google Scholar 

  100. Satoshi M et al (2003) Photocarrier generation at nano-interfaces inorganic polysilane–titania matrix hybrid thin films. Thin Solid Films 438–439:253–256; Magdalena JG, Duan LO, Brmsby O, Alice CS, John RHW (2001) A new solid acid catalyst: the first phosphonate and phosphonic acid functionalized microporous polysilsesquioxanes. Chem Commun 1:67–68; Dhawale DS, Salunkhe RR, Patil UM, Gurav KV, More AM, Lokhande CD (2008) Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 hetero junction. Sens Actuators, B:Chem 134:988–992

    Google Scholar 

  101. Bandgar DK et al (2015) Simple and low-temperature polyaniline-based flexible ammonia sensor: a step towards laboratory synthesis to economical device design. J Mater Chem C 3:9461–9468

    Article  CAS  Google Scholar 

  102. Tai HL et al (2010) J Mater Sci Technol 26(7):605–613

    Article  CAS  Google Scholar 

  103. Xu H, Ju D, Li W, Gong H, Zhang J, Wang J, Cao B (2016) Low-working-temperature, fast-response-speed NO2 sensor with nanoporous-SnO2/polyaniline double-layered film. Sens Actuators B 224:654–660

    Article  CAS  Google Scholar 

  104. Liu C et al (2018) A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens Actuators B 261:587–597

    Article  CAS  Google Scholar 

  105. Hicks SM, Killard A (2014) Electrochemical impedance characterization of tungsten trioxide-polyaniline nanocomposites for room temperature acetone sensing. Sens Actuators B 194:283–289

    Google Scholar 

  106. Kulkarni SB et al (2019) Hybrid polyaniline -WO3 flexible sensor: a room temperature competence towards NH3 gas. Sens Actuators: B Chem 288:279–288

    Article  CAS  Google Scholar 

  107. Pang Z, Yang Z, Chen Y, Zhang J, Wang Q, Huang F, Wei Q (2016) A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers. Colloids Surf, A 494:248–255

    Article  CAS  Google Scholar 

  108. Basavaraja C et al (2010) Macromolecular Res 18(11):1037–1044; Shokry Hassan H et al (2015) PPY—Cu thin films—Development of polypyrrole coated copper thin films for gas sensor application. Sens Bio-Sen Re 5:50–54

    Google Scholar 

  109. Montoya P et al (2015) Performance improvement of microporous polypyrrole sensor for detection of ammonia by incorporation of magnetite nanoparticles. Sens Actuators B 213:444–445

    Article  CAS  Google Scholar 

  110. Lee JS, Jun J, Shin DH, Jang J (2014) Urchin-like polypyrrole nanoparticles for highly sensitive and selective chemiresistive sensor application. Nanoscale 6:4188–4194

    Article  CAS  Google Scholar 

  111. Jain S et al (2017) Ammonia detection 1-D ZnO/Polypyrrole nanocomposite: effect of CSA doping and their structural, chemical, thermal and gas sensing behavior. Appl Surf Sci 306:1317–1325

    Article  CAS  Google Scholar 

  112. Yin Y et al (2018) Inducement of nanoscale Cu–BTC on nanocomposite of PPy–rGO and its performance in ammonia sensing, Mater Res Bull, Elsevier

    Google Scholar 

  113. Pirsa S, Alizadeh N (2010) Design and fabrication of gas sensor based on nanostructure conductive polypyrrole for determination of volatile organic solvents. Sens Actuators B 147:461–466

    Article  CAS  Google Scholar 

  114. Eslami MR, Alizadeh N (2019) Ultrasensitive and selective QCM sensor for detection of trace amounts of nitro explosive vapors in ambient air based on polypyrrole—Bromophenol blue nanostructure. Sens Actuators: B Chem 278:55–63

    Article  CAS  Google Scholar 

  115. Kwon OS, Park SJ, Lee JS et al (2012) Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing. Nano Lett 12(6):2797–802, American Chemical Society

    Google Scholar 

  116. Zhang L et al (2018) Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Science China press and Springer Verlag Gmbh Germany 61(3):303–362

    CAS  Google Scholar 

  117. Poyraz S, Zhang L, Schroder A et al (2015) Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials. ACS Appl Mater Interfaces 7:22469–22477

    Article  CAS  Google Scholar 

  118. Lu X, Zhang W, Wang C et al (2011) One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog Polymer Sci 36:671–712

    Article  CAS  Google Scholar 

  119. Kwon OS, Park E, Kweon OY, Park SJ, Jang J (2010) Novel flexible chemical gas sensor based on poly(3,4-ethylenedioxythiophene) nanotube membrane. Talanta 82:1338–1343

    Google Scholar 

  120. Andòa B et al (2015) An inkjet printed CO2 gas sensor. Procedia Eng 120:628–631

    Article  CAS  Google Scholar 

  121. Dunst K, Jurków D, Jasiński P (2016) Laser patterned platform with PEDOT–graphene composite film for NO2 sensing. Sens Actuators B: Chem 229(28):155–165

    Article  CAS  Google Scholar 

  122. Huang X, Hu N, Gao R, Yu Y, Wang Y, Yang Z, Kong ES-W, Wei H, Zhang Y (2012) Reduced graphene oxide–polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J Mater Chem 22:22488–22495

    Article  CAS  Google Scholar 

  123. Lee CT, Wang Y (2019) High performance room temperature NH3 gas sensors based on polyaniline-reduced graphene oxide nanocomposite sensitive membrane. J Alloy Compd 789:693–699

    Article  CAS  Google Scholar 

  124. Roy A et al (2018) Polyaniline-multiwalled carbon nanotube (PANI-MWCNT): room temperature resistive carbon monoxide (CO) sensor. Synth Met 245:182–189

    Google Scholar 

  125. Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira ON Jr, Lin L (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185:213. https://doi.org/10.1007/s00604-018-2750-5

    Article  CAS  Google Scholar 

  126. Yang S, Jiang C, Wei S (2017) Gas sensing in 2D materials. Appl Phys Rev 4. https://doi.org/10.1063/1.4983310

  127. Yang F et al (2019) Recent progress in two-dimensional nanomaterials: synthesis, engineering, and applications. Flat Chem 18:100133

    Google Scholar 

  128. Liu X, Ma T, Pinna N, Zhang J (2017) Two-dimensional nanostructured materials for gas sensing. Adv Funct Mater 27:1702168. https://doi.org/10.1002/adfm.201702168

    Article  CAS  Google Scholar 

  129. Yang S, Jiang C, Wei S (2017) Gas sensing in 2D materials. Appl Phys Rev 4:021304. https://doi.org/10.1063/1.4983310

    Article  CAS  Google Scholar 

  130. Varghese SS, Varghese SH, Swaminathan S, Singh KK, Mittal V (2015) Two-dimensional materials for sensing: graphene and beyond. Electronics 4:651–687. https://doi.org/10.3390/electronics4030651

    Article  CAS  Google Scholar 

  131. Wang QH et al (2012) Nat Nanotechnol 7:699–712

    Article  CAS  Google Scholar 

  132. Sajedi-Moghaddam A, Saievar-Iranizad E, Pumera M (2017) Two-dimensional transition metal dichalcogenide/ conducting polymer composites: synthesis and applications. Nanoscale 9:8052

    Article  CAS  Google Scholar 

  133. Ko KY et al (2016) Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. 10:9287–9296

    Google Scholar 

  134. Wang D et al (2013) Anal Methods 5:6576–6578

    Article  CAS  Google Scholar 

  135. Yang S, Jiang C, Wei SH (2017) Gas sensing in 2D materials. Appl Phys Rev 4:021304

    Google Scholar 

  136. Abad E, Zampolli S et al (2007) Flexible tag micro lab development: gas sensors integration in RFID flexible tags for food logistic. Sens Actuators B Chem 127(1):2–7

    Google Scholar 

  137. Mäntysalo M et al (2009) Capability of inkjet technology in electronics manufacturing. In: Electronic components and technology conference

    Google Scholar 

  138. Zheng L, Rodriguez S, Shao B (2008) Design and implementation of a fully reconfigurable chip less RFID tag using Inkjet printing technology. In: 2008 IEEE international symposium on circuits and systems (ISCAS 2008)

    Google Scholar 

  139. Amin Y et al (2009) Inkjet printed paper based quadrate bowtie antennas for UHF RFID tags. In: 2009 11th International conference on advanced communication technology (ICACT 2009)

    Google Scholar 

  140. Andersson H et al (2012) Inkjet printed silver nanoparticle humidity sensor with memory effect on paper. IEEE Sens J 12–6:1901–1905

    Article  Google Scholar 

  141. Andò B, Baglio S (2011) Inkjet-printed sensors: a useful approach for low cost, rapid prototyping. IEEE Instrum Meas Mag 14(5):36–40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpana Madgula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madgula, K., Shubha, L.N. (2020). Conducting Polymer Nanocomposite-Based Gas Sensors. In: Thomas, S., Joshi, N., Tomer, V. (eds) Functional Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-4810-9_16

Download citation

Publish with us

Policies and ethics