Skip to main content

Carbon Nanotube Based Wearable Room Temperature Gas Sensors

  • Chapter
  • First Online:
Functional Nanomaterials

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Graphical Abstract

Carbon nanotubes (CNTs) are an important class of nanomaterials that have been demonstrated to find a number of important applications in different areas which broadly include, but not limited to, energy conversion and sensors. The versatility of the CNTs in such diverse areas of applications makes them an important candidate for further research in order to tune them to the ever increasing application demands. It has been well established that the electrical performance of CNT based devices shows high sensitivity to the ambient chemical environment where these devices are operated. Thus, from application point of view, it is very important that a concise study of the interaction between CNTs and chemical gases should be undertaken which can significantly deepen the understanding on nanoscale device physics of these types of materials. For example, for small diameters, with a large surface to volume ratio, CNT has been demonstrated to be a potential material for nanoscale level chemical sensors. Further, a wide array of research from this application point of view has led to the development of CNT based flexible and wearable room temperature gas sensors, and practical applications of CNTs have been demonstrated by the feasible CNT based single electronic devices for sensing applications. This chapter deals with both—the device physics of CNT as well as the development of the CNT based flexible and wearable room temperature gas sensors. The chapter also concisely deals with the current challenges of the CNT devices, e.g. large scale integration of CNT devices at the current stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhitov LV (2016) Carbon nanotubes: sensor properties. A review. Mod Electron Mater 2(4):95–105

    Article  Google Scholar 

  2. Blank VD, Seepujak A, Polyakov EV, Batov DV, Kulnitskiy BA, Parkhomenko Y, Skryleva EA, Bangert U, Gutiérrez-Sosa A, Harvey AJ (2009) Growth and characterisation of BNC nanostructures. Carbon 47(14):3167–3174

    Article  CAS  Google Scholar 

  3. Penza M, Martin PJ, Yeow JTW (2014) Carbon nanotube gas sensors. In: Gas sensing fundamentals, vol 15. Springer series on chemical sensors and biosensors (methods and applications). Springer

    Google Scholar 

  4. Zhang J et al (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 47(28):795–831

    Article  Google Scholar 

  5. Gao Z, Lou Z, Chen S, Li L, Jiang K, Fu Z, Han W, Shen G (2018) Fiber gas sensor-integrated smart face mask for room temperature distinguishing of target gases. Nano Res 11(1):511–519

    Article  CAS  Google Scholar 

  6. Zhang W, Uchida H, Katsube T, Nakatsubo T, Nishioka Y (1998) A novel semiconductor NO gas sensor operating at room temperature. Sens Actuator B-Chem 49:58–62

    Article  CAS  Google Scholar 

  7. Gusain A et al (2017) Flexible NO gas sensor based on conducting polymer poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT). Sens Actuator B-Chem 239:734–745

    Article  CAS  Google Scholar 

  8. Li W, Teng C, Sun Y, Cai L, Xu JL, Sun M, Li X, Yang X, Xiang L, Xie D, Ren T (2018) Sprayed, scalable, wearable, and portable NO2 sensor array using fully flexible AgNPs-All-carbon nanostructures. ACS Appl Mater Interfaces 10:34485–34493

    Article  CAS  Google Scholar 

  9. Wang Y, Yang Z, Hou Z, Xu D, Wei L, Kong ES, Zhang Y (2010) Flexible gas sensors with assembled carbon nanotube thin films for DMMP vapor detection. Sens Actuator B-Chem 150:708–714

    Article  CAS  Google Scholar 

  10. Bittencourt C, Felten A, Espinosa EH, Ionescu R, Llobet E, Correig X, Pireaux JJ (2006) WO3 films modified with functionalised multi-wall carbon nanotubes: morphological, compositional and gas response studies. Sens Actuator B-Chem 115:33–41

    Article  CAS  Google Scholar 

  11. Hua C, Shang Y, Wang Y, Xu J, Zhang Y, Li X, Cao A (2017) A flexible gas sensor based on single-walled carbon nanotube-Fe2O3 composite film. Appl Surf Sci 405:405–411

    Article  CAS  Google Scholar 

  12. Zhou G, Byun JH, Oh Y, Jung BM, Cha HJ, Seong DG, Um MK, Hyun S, Chou TW (2017) Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/poly(vinyl alcohol) filaments. ACS Appl Mater Interfaces 9:4788–4797

    Article  CAS  Google Scholar 

  13. Chiou JC, Wu CC (2017) A wearable and wireless gas-sensing system using flexible polymer/multi-walled carbon nanotube composite films. Polymers 9:457

    Article  Google Scholar 

  14. Clément P, Ramos A, Lazaro A, Luna LM, Bittencourt C, Girbau D, Llobet E (2015) Oxygen plasma treated carbon nanotubes for the wireless monitoring of nitrogen dioxide levels. Sens Actuator B-Chem 208:444–449

    Article  Google Scholar 

  15. Chiou JC, Wu CC, Huang YC, Chang SC, Lin TM (2017) Effects of operating temperature on droplet casting of flexible polymer/multi-walled carbon nanotube composite gas sensors. Sensors 17:4

    Article  Google Scholar 

  16. Su PG, Lee CT, Chou CY, Cheng KH, Chuang YS (2009) Fabrication of flexible NO2 sensors by layer-by-layer self-assembly of multi-walled carbon nanotubes and their gas sensing properties. Sens Actuator B-Chem 139:488–493

    Article  CAS  Google Scholar 

  17. Zheng Y, Li H, Shen W, Jian J (2019) Wearable electronic nose for human skin odor identification: a preliminary study. Sens Actuator A-Phys 285:395–405

    Article  CAS  Google Scholar 

  18. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  19. Bai S, Sun C, Yan H, Sun X, Zhang H, Luo L, Lei X, Wan P, Chen X (2015) Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers. Small 11(43):5807–5813

    Article  CAS  Google Scholar 

  20. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  21. Choi SW, Kim J, Byun YT (2017) Highly sensitive and selective NO2 detection by Pt nanoparticles-decorated single-walled carbon nanotubes and the underlying sensing mechanism. Sens Actuator B-Chem 238:1032–1042

    Article  CAS  Google Scholar 

  22. Choi SW, Kim BM, Oh SH, Byun YT (2017) Selective detection of chlorine at room temperature utilizing single-walled carbon nanotubes functionalized with platinum nanoparticles synthesized via ultraviolet irradiatione. Sens Actuator B-Chem 49:414–422

    Article  Google Scholar 

  23. Choi HH, Lee J, Dong KY, Ju BK, Lee W (2012) Gas sensing performance of composite materials using conducting polymer/single-walled carbon nanotubes. Macromol Res 20(2):143–146

    Article  CAS  Google Scholar 

  24. Consalesa M, Crescitelli A, Penza M, Aversa P, Delli VP, Giordano M, Cusano A (2009) SWCNT nano-composite optical sensors for VOC and gas trace detection. Sens Actuator B-Chem 138:351–361

    Article  Google Scholar 

  25. Lee K, Ju BK (2012) Carbon-nanotube-based flexible devices using a mechanical transfer method. Phys Status Solidi A 10:209

    Google Scholar 

  26. Lee K, Scardaci V, Kim HY, Hallam T, Nolan H, Bolf BE, Maltbie GS, Abbott JE, Duesberg GS (2013) Highly sensitive, transparent, and flexible gas sensors based on gold nanoparticle decorated carbon nanotubes. Sens Actuator B-Chem 188:571–575

    Article  CAS  Google Scholar 

  27. Schroeder V et al (2019) Carbon nanotube chemical sensors. Chem Rev 119(1):599–663

    Article  CAS  Google Scholar 

  28. Liu C, Cheng HM (2013) Carbon nanotubes: controlled growth and application. Mater Today 16:19–28

    Article  Google Scholar 

  29. Balazsi C, Sedlackova K, Llobet E, Ionescu R (2008) Novel hexagonal WO3 nanopowder with metal decorated carbon nanotubes as NO2 gas sensor. Sens Actuator B-Chem 133:151–155

    Article  CAS  Google Scholar 

  30. Chen W, Li F, Ooi PC, Ye Y, Kim TW, Guo T (2016) Room temperature pH-dependent ammonia gas sensors using graphene quantum dots. Sens Actuator B-Chem 222:763–768

    Article  CAS  Google Scholar 

  31. Cho KM, Cho SY, Chong S, Koh HJ, Kim DW, Kim J, Jung HT (2018) Edge-functionalized graphene nanoribbon chemical sensor: comparison with carbon nanotube and graphene. ACS Appl Mater Interfaces 10:42905–42914

    Article  CAS  Google Scholar 

  32. Cui S, Pu H, Lu G, Wen Z, Mattson EC, Hirschmugl C, Josifovska MG, Weinert M, Chen J (2012) Fast and selective room-temperature ammonia sensors using silver nanocrystal-functionalized carbon nanotubes. ACS Appl Mater Interfaces 4:4898–4904

    Article  CAS  Google Scholar 

  33. Espinosa EH, Ionescu R, Chambon B, Bedis G, Sotter E, Bittencourt C, Felten A, Pireaux JJ, Correig X, Llobet E (2007) Hybrid metal oxide and multiwall carbon nanotube films for low temperature gas sensing. Sens Actuator B-Chem 127:137–142

    Article  CAS  Google Scholar 

  34. Chuang PK, Wang LC, Kuo CT (2013) Development of a high performance integrated sensor chip with a multi-walled carbon nanotube assisted sensing array. Thin Solid Films 529:205–208

    Article  CAS  Google Scholar 

  35. Han M, Jung D, Lee GS (2014) Palladium-nanoparticle-coated carbon nanotube gas sensor. Chem Phys Lett 610–611:261–266

    Article  Google Scholar 

  36. Su PG, Chuang YS (2010) Flexible H2 sensors fabricated by layer-by-layer self-assembly thin film of multi-walled carbon nanotubes and modified in situ with Pd nanoparticles. Sens Actuator B-Chem 145:521–526

    Article  CAS  Google Scholar 

  37. Wang Y, Chyu MK, Wang QM (2014) Passive wireless surface acoustic wave CO2 sensor with carbon nanotube nanocomposite as an interface layer. Sens Actuator B-Chem 220:34–44

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Abhay Gusain is awarded FAPESP Postdoctoral fellowship grant (2017/07635-2) by FAPESP, Brazil. Prof. Paulo B. Miranda, IFSC, USP Sao Paulo, Brazil is acknowledged for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Gusain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gusain, A. (2020). Carbon Nanotube Based Wearable Room Temperature Gas Sensors. In: Thomas, S., Joshi, N., Tomer, V. (eds) Functional Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-4810-9_13

Download citation

Publish with us

Policies and ethics