Skip to main content

Application of Nanomaterials in Treatment of Microbial and Viral Infections

  • Chapter
  • First Online:
Applications of Nanomaterials in Human Health

Abstract

The rapid development of drug-resistant issues in pathogenic viral, bacterial, and fungal organisms and the consequent spread of infectious diseases are currently getting serious attention. Nanomaterials are the most capable therapeutic agents to cope with such issues and challenges. The extraordinary physio-chemical properties and remarkable antimicrobial capabilities of nanoparticles have triggered their application in biomedical fields. Nanomaterials from organic and inorganic nature have shown the proficiencies of disrupting microbial cells through different mechanisms. Besides with the direct effect on the microbial cell membrane, DNA, and proteins, these nanomaterials produce reactive oxygen species (ROS) that damage cell components of bacteria and viruses. Presently, a serious danger related with these antimicrobial nanomaterials is their toxicity to human and animal cells. Widespread studies have reported the amount, time, and cell-dependent toxicology of various nanomaterials. But some of them have shown excellent biocompatible properties. In this chapter, the antimicrobial activities of various nanomaterials have been described, exhibiting broad range of biological properties that are highlydependent upon their size, structure, quantity, and binding with receptor cell of different type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adibhatla RM, Hatcher JF (2008) Phospholipase A2, reactive oxygen species, and lipid peroxidation in CNS pathologies. BMB Rep 41(8):560

    CAS  Google Scholar 

  • Arora S, Jain J, Rajwade JM, Paknikar KM (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236(3):310–318

    CAS  Google Scholar 

  • Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41(7):2943–2970

    CAS  Google Scholar 

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    CAS  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827

    CAS  Google Scholar 

  • Bardhan S, Pal K, Roy S, Das S, Chakraborty A, Karmakar P, Basu R, Das S (2019) Nanoparticle size-dependent antibacterial activities in natural minerals. J Nanosci Nanotechnol 19(11):7112–7122

    CAS  Google Scholar 

  • Bosetti M, Massè A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23(3):887–892

    CAS  Google Scholar 

  • Brammer KS, Oh S, Cobb CJ, Bjursten LM, van der Heyde H, Jin S (2009) Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater 5(8):3215–3223

    CAS  Google Scholar 

  • Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5(12):2850–2871

    CAS  Google Scholar 

  • Chen X, Li C, Grätzel M, Kostecki R, Mao SS (2012) Nanomaterials for renewable energy production and storage. Chem Soc Rev 41(23):7909–7937

    CAS  Google Scholar 

  • Chithrani BD (2011) Optimization of bio-nano interface using gold nanostructures as a model nanoparticle system. Insciences J 1(3):115–135

    CAS  Google Scholar 

  • Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Adv Technol 16(8):600–607

    CAS  Google Scholar 

  • Chow CW, Herrera Abreu MT, Suzuki T, Downey GP (2003) Oxidative stress and acute lung injury. Am J Respir Cell Mol Biol 29(4):427–431

    CAS  Google Scholar 

  • Correard F, Maximova K, Esteve MA, Villard C, Roy M, Al-Kattan A, Sentis M, Gingras M, Kabashin AV, Braguer D (2014) Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications. Int J Nanomedicine 9:5415

    CAS  Google Scholar 

  • Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interf Sci 166(1–2):119–135

    CAS  Google Scholar 

  • Das R, Gang S, Nath SS (2011) Preparation and antibacterial activity of silver nanoparticles. J Biomater Nanobiotechnol 2(4):472

    CAS  Google Scholar 

  • De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20(22):4225–4241

    CAS  Google Scholar 

  • Ding Z, Xu K (2019) Recent progress in imaging technology combined with nanomaterials for medical applications. Micro & Nano Lett 14(12):1263–1267

    CAS  Google Scholar 

  • Dodds DR (2017) Antibiotic resistance: a current epilogue. Biochem Pharmacol 134:139–146

    CAS  Google Scholar 

  • Dagar G, Bagchi G (2020) Nanoparticles as potential endocrine disruptive chemicals. In: Saxena S, Khurana S (eds) NanoBioMedicine. Springer, Singapore

    Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    CAS  Google Scholar 

  • Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AVR (2012) Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf B: Biointerfaces 94:143–150

    CAS  Google Scholar 

  • Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217

    CAS  Google Scholar 

  • Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109(18):8889–8898

    CAS  Google Scholar 

  • Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22(1):64–75

    CAS  Google Scholar 

  • Giavaresi G, Giardino R, Ambrosio L, Battiston G, Gerbasi R, Fini M, Rimondini L, Torricelli P (2003 Aug) In vitro biocompatibility of titanium oxide for prosthetic devices nanostructured by low pressure metal-organic chemical vapor deposition. Int J Artif Organs 26(8):774–780

    CAS  Google Scholar 

  • Guidelli EJ, Ramos AP, Zaniquelli MED, Nicolucci P, Baffa O (2012) Synthesis and characterization of silver/alanine nanocomposites for radiation detection in medical applications: the influence of particle size on the detection properties. Nanoscale 4(9):2884–2893

    CAS  Google Scholar 

  • Gupta P, Bajpai M, Bajpai SK (2008) Investigation of antibacterial properties of silver nanoparticle-loaded poly (acrylamide-co-itaconic acid)-grafted cotton fabric. J Cotton Sci 12:280–286

    CAS  Google Scholar 

  • Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 8(1):37–45

    CAS  Google Scholar 

  • Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects—pros and cons. Environ Health Perspect 114(12):1818–1825

    CAS  Google Scholar 

  • Haase A, Arlinghaus HF, Tentschert J, Jungnickel H, Graf P, Mantion A, Draude F, Galla S, Plendl J, Goetz ME, Masic A (2011) Application of laser postionization secondary neutral mass spectrometry/time-of-flight secondary ion mass spectrometry in nanotoxicology: visualization of nanosilver in human macrophages and cellular responses. ACS Nano 5(4):3059–3068

    CAS  Google Scholar 

  • Hahn YB (2011) Zinc oxide nanostructures and their applications. Korean J Chem Eng 28(9):1797

    CAS  Google Scholar 

  • Hajkova P, Spatenka P, Horsky J, Horska I, Kolouch A (2007) Photocatalytic effect of TiO2 films on viruses and bacteria. Plasma Process Polym 4(S1):S397–S401

    Google Scholar 

  • Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR (2008) Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology 17(5):396–409

    CAS  Google Scholar 

  • Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Ferey G, Morris RE, Serre C (2012) Metal–organic frameworks in biomedicine. Chem Rev 112(2):1232–1268

    CAS  Google Scholar 

  • van Hove RP, Sierevelt IN, van Royen BJ, Nolte PA (2015) Titanium-nitride coating of orthopaedic implants: a review of the literature. Biomed Res Int 2015:9

    Google Scholar 

  • Huang WC, Tsai PJ, Chen YC (2007) Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria. Nanomedicine (Lond) 2:777–787

    CAS  Google Scholar 

  • Hubbell JA, Chilkoti A (2012) Nanomaterials for drug delivery. Science 337(6092):303–305

    Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro 19(7):975–983

    CAS  Google Scholar 

  • Iavicoli I, Fontana L, Leso V, Bergamaschi A (2013) The effects of nanomaterials as endocrine disruptors. Int J Mol Sci 14(8):16732–16801

    Google Scholar 

  • Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5(2):316–327

    CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76

    CAS  Google Scholar 

  • Khoshnevisan K, Maleki H, Honarvarfard E, Baharifar H, Gholami M, Faridbod F, Larijani B, Majidi RF, Khorramizadeh MR (2019) Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review. Microchim Acta 186(1):49

    Google Scholar 

  • Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9(3):129–134

    Google Scholar 

  • Kim BY, Rutka JT, Chan WC (2010) Nanomedicine. N Engl J Med 363(25):2434–2443

    CAS  Google Scholar 

  • Kiss B, Bíró T, Czifra G, Tóth BI, Kertész Z, Szikszai Z, Kiss ÁZ, Juhász I, Zouboulis CC, Hunyadi J (2008) Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp Dermatol 17(8):659–667

    CAS  Google Scholar 

  • Li Y, Lee IS, Cui FZ, Choi SH (2008) The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterials 29(13):2025–2032

    CAS  Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, You-Sheng OY, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):1115–1122

    CAS  Google Scholar 

  • Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6):5164–5173

    CAS  Google Scholar 

  • Lima E, Guerra R, Lara V, Guzmán A (2013) Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Central J 7(1):11

    CAS  Google Scholar 

  • Liu X, Jin Q, Ji Y, Ji J (2012) Minimizing nonspecific phagocytic uptake of biocompatible gold nanoparticles with mixed charged zwitterionic surface modification. J Mater Chem 22(5):1916–1927

    CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PKH, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. JBIC J Biol Inorg Chem 12(4):527–534

    CAS  Google Scholar 

  • López-Huerta F, Cervantes B, González O, Hernández-Torres J, García-González L, Vega R, Herrera-May AL, Soto E (2014) Biocompatibility and surface properties of TiO2 thin films deposited by DC magnetron sputtering. Materials 7(6):4105–4117

    Google Scholar 

  • Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15(10):1708–1715

    CAS  Google Scholar 

  • Marambio-Jones C, Hoek EM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551

    CAS  Google Scholar 

  • Mishra M, Kumar H, Tripathi K (2008) Diabetic delayed wound healing and the role of silver nanoparticles. Dig J Nanomater Bios 3(2):49–54

    Google Scholar 

  • Naqvi S, Samim M, Abdin MZ, Ahmed FJ, Maitra AN, Prashant CK, Dinda AK (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 5:983

    CAS  Google Scholar 

  • Nikolaichik VI, Chaplanov AM, Khodos II, Bagaev SI, Chekan NM (2013) Structure and composition of nanotubes formed during the anode oxidation of titanium. Bull Russ Acad Sci Phys 77(8):948–950

    CAS  Google Scholar 

  • Norman RS, Stone JW, Gole A, Murphy CJ, Sabo-Attwood TL (2008) Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett 8(1):302–306

    CAS  Google Scholar 

  • Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112(10):1058–1062

    Google Scholar 

  • Orellano MS, Isaac P, Breser ML, Bohl LP, Conesa A, Falcone RD, Porporatto C (2019) Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens. Carbohydr Polym 213:1–9

    CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    CAS  Google Scholar 

  • Pan Z, Lee W, Slutsky L, Clark RA, Pernodet N, Rafailovich MH (2009) Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5(4):511–520

    CAS  Google Scholar 

  • Pasquet J, Chevalier Y, Pelletier J, Couval E, Bouvier D, Bolzinger MA (2014) The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf A Physicochem Eng Asp 457:263–274

    CAS  Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32

    Google Scholar 

  • Prasad V, D’Souza C, Yadav D, Shaikh AJ, Vigneshwaran N (2006) Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction. Spectrochim Acta A Mol Biomol Spectrosc 65(1):173–178

    Google Scholar 

  • Priyam A, Singh PP, Gehlout S (2018) Role of endocrine-disrupting engineered nanomaterials in the pathogenesis of type 2 diabetes mellitus. Front Endocrinol (Lausanne) 9:704

    Google Scholar 

  • Qhobosheane M, Santra S, Zhang P, Tan W (2001) Biochemically functionalized silica nanoparticles. Analyst 126(8):1274–1278

    CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    CAS  Google Scholar 

  • Rakkesh RA, Balakumar S (2013) Facile synthesis of ZnO/TiO2 core–shell nanostructures and their photocatalytic activities. J Nanosci Nanotechnol 13(1):370–376

    CAS  Google Scholar 

  • Ravindran A, Chandran P, Khan SS (2013) Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf B: Biointerfaces 105:342–352

    CAS  Google Scholar 

  • Rehbock C, Jakobi J, Gamrad L, Van der Meer S, Tiedemann D, Taylor U, Kues W, Rath D, Barcikowski S (2014) Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays. Beilstein J Nanotechnol 5(1):1523–1541

    Google Scholar 

  • Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43(5):1501–1518

    CAS  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592

    CAS  Google Scholar 

  • Sarkar S, Jana AD, Samanta SK, Mostafa G (2007) Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron 26(15):4419–4426

    CAS  Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54(2):177–182

    CAS  Google Scholar 

  • Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343

    CAS  Google Scholar 

  • Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10(1):15

    CAS  Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18(22):225103

    Google Scholar 

  • Simon A, Maletz SX, Hollert H, Schäffer A, Maes HM (2014) Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation. Nanoscale Res Lett 9(1):396

    Google Scholar 

  • Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Bios 3(3):115–122

    Google Scholar 

  • Smetana AB, Klabunde KJ, Marchin GR, Sorensen CM (2008) Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24(14):7457–7464

    CAS  Google Scholar 

  • Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 4:95

    CAS  Google Scholar 

  • Song Z, Wu Y, Wang H, Han H (2019) Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROS-mediated pathways. Mater Sci Eng C 99:255–263

    CAS  Google Scholar 

  • Sui M, Zhang L, Sheng L, Huang S, She L (2013) Synthesis of ZnO coated multi-walled carbon nanotubes and their antibacterial activities. Sci Total Environ 452:148–154

    Google Scholar 

  • Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I (2018) Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 13(1):44

    Google Scholar 

  • Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, Li M (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res A 80(2):333–341

    Google Scholar 

  • Sung AY, Kim TH (2012) Preparation and characterization of ophthalmic polymers containing silicon nanoparticles. Korean J Chem Eng 29(9):1272–1278

    CAS  Google Scholar 

  • Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, Kim TS (2008) Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20(6):567–574

    CAS  Google Scholar 

  • Taccola L, Raffa V, Riggio C, Vittorio O, Iorio MC, Vanacore R, Pietrabissa A, Cuschieri A (2011) Zinc oxide nanoparticles as selective killers of proliferating cells. Int J Nanomedicine 6:1129

    CAS  Google Scholar 

  • Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534

    CAS  Google Scholar 

  • Tiwari PM, Vig K, Dennis VA, Singh SR (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1(1):31–63

    CAS  Google Scholar 

  • Tshikhudo TR, Wang Z, Brust M (2004) Biocompatible gold nanoparticles. Mater Sci Technol 20(8):980–984

    CAS  Google Scholar 

  • Ul-Islam M, Shehzad A, Khan S, Khattak WA, Ullah MW, Park JK (2014) Antimicrobial and biocompatible properties of nanomaterials. J Nanosci Nanotechnol 14(1):780–791

    CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    CAS  Google Scholar 

  • Varghese S, Kuriakose S, Jose S (2013) Antimicrobial activity of carbon nanoparticles isolated from natural sources against pathogenic Gram-negative and Gram-positive bacteria. J Nanosci 2013:5

    Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    CAS  Google Scholar 

  • Von White G, Kerscher P, Brown RM, Morella JD, McAllister W, Dean D, Kitchens CL (2012) Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. J Nanomater 2012:12

    Google Scholar 

  • Webster DM, Sundaram P, Byrne ME (2013) Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm 84(1):1–20

    CAS  Google Scholar 

  • Wei C, Lin WY, Zainal Z, Williams NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K (1994) Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol 28(5):934–938

    CAS  Google Scholar 

  • Wist J, Sanabria J, Dierolf C, Torres W, Pulgarin C (2002) Evaluation of photocatalytic disinfection of crude water for drinking-water production. J Photochem Photobiol A Chem 147(3):241–246

    CAS  Google Scholar 

  • Xu S, Xu Q, Zhou J, Wang J, Zhang N, Zhang L (2013) Preparation and characterization of folate-chitosan-gemcitabine core–shell nanoparticles for potential tumor-targeted drug delivery. J Nanosci Nanotechnol 13(1):129–138

    CAS  Google Scholar 

  • Yang Y, Zhang C, Hu Z (2013) Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ Sci Proc Imp 15(1):39–48

    CAS  Google Scholar 

  • Yeo MK, Yoon JW (2009) Comparison of the effects of nano-silver antibacterial coatings and silver ions on zebrafish embryogenesis. Mol Cell Toxicol 5(1):23–31

    Google Scholar 

  • Yuan JH, Chen Y, Zha HX, Song LJ, Li CY, Li JQ, Xia XH (2010) Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles. Colloids Surf B: Biointerfaces 76(1):145–150

    CAS  Google Scholar 

  • Zhang Y, Tang Y, Wang Y, Zhang L (2011) Nanomaterials for cardiac tissue engineering application. Nano-Micro Lett 3(4):270–277

    Google Scholar 

  • Zhang X, An H, Wang R, Feng J, Fan Z, Ren Y (2019) Low-energy disinfection under natural light by magnetic AgxMn1− xFe2O4 in the water: efficiency and mechanism. J Taiwan Inst Chem Eng 97:336–345

    CAS  Google Scholar 

  • Zhou J, Xu NS, Wang ZL (2006) Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Adv Mater 18(18):2432–2435

    CAS  Google Scholar 

  • Zhou ZY, Tian N, Li JT, Broadwell I, Sun SG (2011) Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev 40(7):4167–4185

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebtesam A. Al-Suhaimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shehzad, A., Shahzad, R., Aldossary, H., Al-Suhaimi, E.A. (2020). Application of Nanomaterials in Treatment of Microbial and Viral Infections. In: Khan, F. (eds) Applications of Nanomaterials in Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-15-4802-4_9

Download citation

Publish with us

Policies and ethics