Skip to main content

Application of Nanomaterials: Overview and Historical Perspectives

  • Chapter
  • First Online:
Applications of Nanomaterials in Human Health
  • 1063 Accesses

Abstract

Nanotechnology in the last few years has gained important and critical recognition in different fields and applications. Nano-fluids are fluids containing suspension of nanometer-sized particles. Their importance arose due to the need to enhance thermal performance of energy and thermal systems with noninvasive techniques. Nano-fluids have superior thermal properties over the base fluids such as water, mineral oil, vegetable oil, thermal oil, and synthetic oil. This feature makes them very attractive as heat transfer fluids in many applications and manufacturing processes. Nano-fluids have been recognized as nanoparticle of suspensions (1–100 nm) in a base fluid. Nano-fluids have other applications in biotechnology applications for drug delivery and advanced sensors technology. Nanoparticles are prepared from metal oxides, metals, or carbon in different forms. This chapter is intended to focus on the nanoparticle’s characteristics, behavior in applications such as momentum and mass, enhanced energy, and heat transfer, and, enhancement of solar energy applications. Other applications involving nanomaterials were also presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd Ellah NH, Abouelmagd SA (2016) Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Deliv 14:1–14. https://doi.org/10.1080/17425247.2016.1213238

    Article  CAS  Google Scholar 

  • Abdul Hamid K, Azmi WH, Mamat R, Usri NA, Najafi G (2015) Effect of titanium oxide nanofluid concentration on pressure drop. ARPN J Eng Appl Sci 10(17):7815–7820

    CAS  Google Scholar 

  • Abu-Nada E, Masoud Z, Oztop HF, Campo A (2010) Effect of nanofluid variable properties on natural convection in enclosures. Int J Therm Sci 49(3):479–491

    CAS  Google Scholar 

  • Akoh H, Tsukasaki Y, Yatsuya S, Tasaki A (1978) Magnetic properties of ferromagnetic particles prepared by vacuum evaporation on running oil substrate. J Cryst Growth 45:495–500

    CAS  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    CAS  Google Scholar 

  • Bica D, V´ek´as L, Avdeev MV et al (2007) Sterically stabilized water based magnetic fluids: synthesis, structure and properties. J Magn Magn Mater 311(1):17–21

    CAS  Google Scholar 

  • Chen H, Ding Y, Tan C (2007) Rheological behaviour of nano-fluids. New J Phys 9(10):367–367

    Google Scholar 

  • Chiang PC, Hung DS, Wang JW, Ho CS, Yao YD (2007) Engineering water dispersible FePt nanoparticles for biomedical applications. IEEE Trans Magn 43(6):2445–2447

    CAS  Google Scholar 

  • Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of Non-Newtonian flows. ASME FED 231/MD 66:99–103

    Google Scholar 

  • Das S (2015) Nano-fluids for heat transfer: an analysis of thermophysical properties. IOSR J Appl Phys 7(5):34–40

    Google Scholar 

  • Das SK, Choi SUS (2006) Heat transfer in Nano-fluids—A review. Heat Trans Eng 27(10):3–19

    CAS  Google Scholar 

  • Das SK, Putra N, Roetzel W (2003) Pool boiling characteristics of nano fluids. Int J Heat Mass Transf 46(5):851–862

    CAS  Google Scholar 

  • Das SK, Choi SUS, Yu W, Pradeep T (2007) Nano-fluids: science and technology. Wiley, New York

    Google Scholar 

  • Demirbas MF (2006) Thermal energy storage and phase change materials: an overview. Energy Sources Part B 1(1):85–95

    CAS  Google Scholar 

  • Ding Y, Alias H, Wen D, Williams R (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT Nano-fluids). Int J Heat Mass Transf 49(2):240–250. Vol-3 Issue-3 2017 IJARIIE-ISSN (O)-2395-439 www.ijariie.com 3206

    CAS  Google Scholar 

  • Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nano-fluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720

    CAS  Google Scholar 

  • Escher W, Brunschwiler T, Shalkevich N, Shalkevich A, Bu¨rgi T, Michel B, Poulikakos D (2011) On the cooling of electronics tithe nano-fluids. J Heat Transf 133(5):051401

    Google Scholar 

  • Fan X, Chen H, Ding Y, Plucinski PK, Lapkin AA (2008) Potential of ‘nano-fluids’ to further intensify microreactors. Green Chem 10(6):670–677

    CAS  Google Scholar 

  • Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y (2015) Bone Res 3:15029. https://doi.org/10.1038/boneres.2015.29

    Article  CAS  Google Scholar 

  • Guptha HK, Agarwal GD, Mathur J (2012) An overview of nano-fluids: a new media towards green environment. Int J Environ Sci 3(1):433–440

    Google Scholar 

  • Hwang Y, Lee JK, Lee JK, Jeon YM, Cheong S, Ahn YC, Kim SH (2008) Production and dispersion stability of nanoparticles in nano-fluids. Powder Technol 186:145–153

    CAS  Google Scholar 

  • Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P (2010) ZnO nano-fluids: green synthesis, characterization, and antibacterial activity. Mater Chem Phys 121(1–2):198–201

    CAS  Google Scholar 

  • Jama M, Singh T, Gamaleldin SM, Koc M, Samara A, Isaifan RJ, Atieh MA (2016) Critical review on nano-fluids: preparation, characterization, and applications. J Nanomater 2016:22. https://doi.org/10.1155/2016/6717624

    Google Scholar 

  • Jamshidi N, Farhadi M, Ganji DD, Sedighi K (2012) Experimental investigation on the viscosity of nano-fluids. Int J Eng, Trans B: Appl 25(3):201–209

    CAS  Google Scholar 

  • Jang SP, Choi SUS (2006) Cooling performance of a microchannel heat sink with nano-fluids. Appl Therm Eng 26(17–18):2457–2463

    CAS  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76

    CAS  Google Scholar 

  • Khan I, Khalid S, Idrees K (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    CAS  Google Scholar 

  • Kim YS, Nakatsuka K, Fujita T, Atarashi T (1999) Application of hydrophilic magnetic fluid to oil seal. J Magn Magn Mater 201(1–3):361–363

    CAS  Google Scholar 

  • Kim JK, Jung JY, Kang YT (2007) Absorption performance enhancement by nanoparticles and chemical surfactants in binary nano-fluids. Int J Refrig 30(1):50–57

    CAS  Google Scholar 

  • Kole M, Dey TK (2010) Viscosity of alumina nanoparticles dispersed in car engine coolant. Exp Thermal Fluid Sci 34(6):677–683

    CAS  Google Scholar 

  • Kulkarni DP, Das DK, Vajjha RS (2009) Application of nano-fluids in heating buildings and reducing pollution. Appl Energy 86(12):2566–2573

    CAS  Google Scholar 

  • Kumar N, Kumbhat S (2016) Carbon-based nanomaterials: essentials in nanoscience and nanotechnology. John Wiley & Sons, Inc., Hoboken, NJ, U.S.A., pp 189–236. https://doi.org/10.1002/9781119096122.ch5

    Book  Google Scholar 

  • Lazarus G, Raja B, Mohan Lal D, Wongwises S (2010) Enhancement of heat transfer using nanofluids-An overview. Renew Sust Energ Rev 14:629–641

    Google Scholar 

  • Lee S and Choi SUS (1996) Application of metallic nanoparticle suspensions in advanced cooling systems, International Mechanical Engineering Congress an Exhibition, Atlanta, USA.

    Google Scholar 

  • Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121(2):280–289

    CAS  Google Scholar 

  • Li D, Kaner RB (2005) Processable stabilizer-free polyaniline nanofiber aqueous colloids. Chem Commun 14(26):3286–3288

    Google Scholar 

  • Li Y, Zhou J, Tung S, Schneider E, Xi S (2009) A review on development of nanofluid preparation and characterization. Powder Technol 196(2):89–101

    CAS  Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107(4):1193–1201

    CAS  Google Scholar 

  • Lv Y, Zhou Y, Li C, Wang Q, Qi B (2014) Recent progress in nano-fluids based on transformer oil: preparation and electrical insulation properties. IEEE Electr Insul Mag 30(5):23–32

    Google Scholar 

  • Ma X, Su F, Chen J, Zhang Y (2007) Heat and mass transfer enhancement of the bubble absorption for a binary nanofluid. J Mech Sci Technol 21:1813

    Google Scholar 

  • Mahapatra O, Bhagat M, Gopalakrishnan C, Arunachalam KJ (2008) Ultrafine dispersed CuO nanoparticles and their antibacterial activity. Exp Nanosci 3(3):185–193

    CAS  Google Scholar 

  • Maxwell JC (1873) Treatise on electricity and magnetism. Clarendon Press, Oxford

    Google Scholar 

  • Namburu PK, Das DK, Tanguturi KM, Vajjha RS (2009) Numerical study of turbulent flow and heat transfer characteristics of nano-fluids considering variable properties. Int J Therm Sci 48(2):290–302

    CAS  Google Scholar 

  • Nelson IC, Banerjee D, Ponnappan R (2009) Flow loop experiments using polyalphaolefin nano-fluids. J Thermophys Heat Transf 23(4):752–761

    CAS  Google Scholar 

  • Nikkam N, Saleemi M, Haghighi EB et al (2014) Fabrication, characterization and thermo- physical property evaluation of SiC nano-fluids for heat transfer applications. Nano-Micro Letters 6(2):178–189

    CAS  Google Scholar 

  • Otanicar TP, Phelan PE, Prasher RS, Rosengarten G, Taylor RA (2010) Nanofluid based direct absorption solar collector. J Renew Sustain Energy 2(3):13

    Google Scholar 

  • Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11(2):151–170

    CAS  Google Scholar 

  • Pastorin G, Wu W, Wieckowski S, Briand J, Kostarelos K, Kostarelos M, Bianco A (2006) Double functionalization of carbon nanotubes for multimodal drug delivery. Chem Commun (Camb) 21(11):1182–1184

    Google Scholar 

  • Patel VS, Kapadia RG, Deore DA (2006) An experimental study of counter flow concentric tube heat exchanger using CuO/Water nanofluid. Int J Eng Res & Technol (IJERT) 2(6):914–920

    Google Scholar 

  • Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (Nano-fluids). Phys Rev Lett 94(2):25901

    Google Scholar 

  • Puliti G, Paolucci S, Sen M (2011a) Nano-fluids and their properties. Appl Mech Rev (ASME) 64(030803):1–23

    Google Scholar 

  • Puliti G, Paolucci S, Sen M (2011b) Thermodynamic properties of gold-water Nanolayer mixtures using molecular dynamics. J Nanopart Res 13(9):4277–4293. Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

    CAS  Google Scholar 

  • Rosensweig RE (1987) Magnetic fluids. Annu Rev Fluid Mech 19:437–463

    Google Scholar 

  • Saidur R, Kazi SN, Hossain MS, Rahman MM, Mohammed HA (2011) Review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew Sust Energ Rev 15(1):310–323

    CAS  Google Scholar 

  • Sami S (2019a) Modelling and simulation of performance of nano-fluids in PV-thermal solar panel collectors. RA J Appl Res 05(01), ISSN: 2394-670. https://doi.org/10.31142/rajar/v5i1.07

  • Sami S (2019b) Analysis of nano-fluids behavior in concentrated solar power collectors with organic Rankine cycle. Appl Syst Innov 2:0022. https://doi.org/10.3390/asi2030022. www.mdpi.com/journal/asi

    Article  Google Scholar 

  • Sami S, Marin E (2019) Modelling and simulation of PV solar-thermoelectric generators using nano fluids. Int J Sust Energy Environ Res 8(1):70–99

    Google Scholar 

  • Shen B, Shih AJ, Tung SC (2008) Application of nano-fluids in minimum quantity lubrication grinding. Tribol Trans 51(6):730–737

    CAS  Google Scholar 

  • Shin D, Banerjee D (2011a) Enhancement of Specific heat capacity of high temperature silica-nano-fluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int J Heat Mass Transf 54(5–6):1064–1070

    CAS  Google Scholar 

  • Shin D, Banerjee D (2011b) Enhanced specific heat of silica nanofluid. J Heat Transf 133(2):024501

    Google Scholar 

  • Shokouhmand H, Ghazvini M, Shabanian J (2008) Performance analysis of using nanofluid in microchannel heat sink in different flow regimes and its simulation using artificial neural network. In Proceedings of the World Congress on Engineering (WCE ’08), vol. 3, London, UK, July.

    Google Scholar 

  • Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223

    CAS  Google Scholar 

  • Singh AK, Raykar VS (2008) Microwave synthesis of silver nano-fluids with polyvinylpyrrolidone (PVP) and their transport properties. Colloid Polym Sci 286(14–15):1667–1673

    CAS  Google Scholar 

  • Storm G, Belliot SO, Daemen T, Lasic DD (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17(1):31–48

    CAS  Google Scholar 

  • Swati S, Spandana U, Manjula RR, Sowjanya K, Sindhu G, Pravallika C (2017) Nano fluids: an innovative approach and potential applications. Journal de Afrikana 4(3):454–472

    Google Scholar 

  • Timofeeva EV, Smith DS, Yu W, France DM, Singh D, Routbort JL (2010) Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nano-fluids. Nanotechnology 21(21):215703–215710

    Google Scholar 

  • Timofeeva EV, Yu W, France DM, Singh D, Routbort JL (2011) Base fluid and temperature effects on the heat transfer characteristics of SiC in ethylene glycol/H2O and H2O nano-fluids. J Appl Phys 109(1). https://doi.org/10.1063/1.3524274

  • Torchilin VP, Trubetskoy VS (1995) Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 16(2–3):141–155

    CAS  Google Scholar 

  • Tseng W, Lin K (2003) Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mater Sci Eng A 355(1–2):186–192

    Google Scholar 

  • Tyagi H, Phelan P, Prasher R (2009) Predicted efficiency of a low-temperature Nanofluid based direct absorption solar collector. J Solar Energy Eng 131(4):0410041–0410047

    Google Scholar 

  • Tzeng SC, Lin CW, Huang KD (2005) Heat transfer enhancement of nano-fluids in rotary blade coupling of four-wheel-drive vehicles. Acta Mech 179(1–2):11–23

    Google Scholar 

  • Vajjha RS, Das DK (2009) Specific heat measurement of three nano-fluids and development of new correlations. J Heat Transf 131(7):071601

    Google Scholar 

  • Vassallo P, Kumar R, D’Amico S (2004) Pool boiling heat transfer experiments in silica water nano-fluids. Int J Heat Mass Transf 47(2):407–411

    CAS  Google Scholar 

  • Vékás L, Bica D, Avdeev MV (2007) Magnetic nanoparticles and concentrated magnetic nano-fluids: synthesis, properties and some applications. China Particuology 5(1–2):43–49

    Google Scholar 

  • Wang L, Fan J (2010) Nano-fluids research: key issues. Nanoscale Res Lett 5(8):1241–1252

    Google Scholar 

  • Wang XQ, Mujumdar AS (2007) Heat transfer characteristics of nano-fluids: a review. Int J Therm Sci 46(1):1–19

    Google Scholar 

  • Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13(4):474–480

    CAS  Google Scholar 

  • Wu S, Zhu D, Zhang X, Huang J (2010) Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM). Energy Fuel 24(3):1894–1898

    CAS  Google Scholar 

  • Xiang QW, Arun SM (2008) A review on nano-fluids-experiments and applications. Braz J Chem Eng 25(4):631–648

    Google Scholar 

  • Xie H, Chen L (2009) Adjustable thermal conductivity in carbon nanotube nano-fluids. Phys Lett Section A 373(21):1861–1864

    CAS  Google Scholar 

  • Xuan Y, Li Q (2000a) Heat transfer enhancement of Nano-fluids. Int J Heat Fluid Flow 21:58–64

    CAS  Google Scholar 

  • Xuan Y, Li Q (2000b) Heat transfer enhancement of nano-fluids. Int J Heat Fluid Trans 21:58–64

    CAS  Google Scholar 

  • Yang X-F, Liu Z-H (2011) Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures. Int J Therm Sci 50(12):2402–2412

    CAS  Google Scholar 

  • Yu W, France DM, Choi SUS, Routbort JL (2007) Review and assessment of nanofluid technology for transportation and other applications, Tech. Rep. 78, ANL/ESD/07-9, Argonne National Laboratory.

    Google Scholar 

  • Yu HL, Xu Y, Shi PJ, Xu BS, Wang XL, Liu Q (2008) Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Trans Nonferrous Metals Soc China 18(3):636–641

    CAS  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nano-fluids). J Nanopart Res 9(3):479–489

    Google Scholar 

  • Zhou S-Q, Ni R (2008) Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett 92(9):093123

    Google Scholar 

  • Zhou J, Wu Z, Zhang Z, Liu W, Xue Q (2000) Tribological behavior and lubricating mechanism of Cu nanoparticles in oil. Tribol Lett 8(4):213–218

    CAS  Google Scholar 

  • Zhu HT, Lin YS, Yin YS (2004) A novel one-step chemical method for preparation of copper nano-fluids. J Colloid Interface Sci 277(1):100–103

    CAS  Google Scholar 

  • Zhu H, Zhang C, Liu S, Tang Y, Yin Y (2006) Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nano-fluids. Appl Phys Lett 89(2):1–3

    Google Scholar 

  • Zhu H, Zhang C, Tang Y, Wang J, Ren B, Yin Y (2007a) Preparation and thermal conductivity of suspensions of graphite nanoparticles. Carbon 45(1):226–228

    CAS  Google Scholar 

  • Zhu HT, Zhang CY, Tang YM, Wang JX (2007b) Novel synthesis and thermal conductivity of CuO nanofluid. J Phys Chem C 111(4):1646–1650

    CAS  Google Scholar 

Download references

Acknowledgements

This study is funded by the “Catholic University of Cuenca” and the research work presented in this chapter was due to the support of the “Catholic University of Cuenca.” The author declares that he has no competing interests. The author has contributed completely in the conception and design of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Sami-Howard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sami-Howard, S. (2020). Application of Nanomaterials: Overview and Historical Perspectives. In: Khan, F. (eds) Applications of Nanomaterials in Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-15-4802-4_4

Download citation

Publish with us

Policies and ethics