Skip to main content

Effects of the Bio-accumulative Environmental Pollutants on the Gut Microbiota

  • Chapter
  • First Online:
Gut Remediation of Environmental Pollutants
  • 443 Accesses

Abstract

With the development of modern industry and agriculture, human is chronically exposed to various toxic environmental pollutants, such as heavy metals, pesticides, antibiotics, other persistent organic pollutants, and some biological contaminants. Most of them are non-degradable and can be accumulated in bodies, which poses various adverse health concern as well as alterations in the metabolic activity and/or the composition of the gut microbiota (GM). Conversely, pollutants-induced alterations of gut microbiota have been shown to modulate the toxicity of environmental pollutants to the host. Therefore, the occurrence of a lots of diseases is likely related with pollutant-altered gut microbiota. However, the physiological consequences of these alterations have not been studied in detail, especially the bidirectional correlation between the toxicological relevance of gut microbiota and host physiology. In this review, we aim to explore the modes and outcomes of different environmental pollutants on hosts health mainly from the perspective of GM based on the existing relevant studies. It is important for us to rationally manipulate the gut microbiota by the specific bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forsythe P, Kunze WA (2013) Voices from within: gut microbes and the CNS. Cell Mol Life Sci 70(1):55–69

    Article  CAS  PubMed  Google Scholar 

  2. Clemente JC et al (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Young VB (2012) The intestinal microbiota in health and disease. Curr Opin Gastroenterol 28(1):63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837–848

    Article  CAS  PubMed  Google Scholar 

  6. Yatsunenko T et al (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goodrich JK et al (2014) Human genetics shape the gut microbiome. Cell 159(4):789–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. David LA et al (2013) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Jakobsson HE et al (2015) The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 16(2):164–177

    Article  CAS  PubMed  Google Scholar 

  10. Spanogiannopoulos P et al (2016) The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol 14:273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Charbonneau MR et al (2016) Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164(5):859–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci 107(27):12204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heijtz RD et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci 108(7):3047

    Article  CAS  PubMed Central  Google Scholar 

  14. Hsiao EY et al (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Claus SP et al (2011) Colonization-induced host-gut microbial metabolic interaction. MBio 2(2):e00271–e00210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Marchesi JR et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65(2):330

    Article  PubMed  Google Scholar 

  17. Scott KP et al (2015) Manipulating the gut microbiota to maintain health and treat disease. Microb Ecol Health Dis 26(1):25877

    PubMed  Google Scholar 

  18. Ley RE et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102(31):11070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tilg H, Moschen AR (2014) Microbiota and diabetes: an evolving relationship. Gut 63(9):1513

    Article  CAS  PubMed  Google Scholar 

  20. Yang T et al (2015) Gut dysbiosis is linked to hypertension. Hypertension 65(6):1331–1340

    Article  CAS  PubMed  Google Scholar 

  21. Ling Z et al (2014) Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol 80(8):2546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wang Z et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lippert K et al (2017) Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benefic Microbes 8(4):545–556

    Article  CAS  Google Scholar 

  24. Turnbaugh PJ et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031

    Article  PubMed  Google Scholar 

  25. Qin J et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60

    Article  CAS  PubMed  Google Scholar 

  26. Tabrez S, Ahmad M (2011) Oxidative stress-mediated genotoxicity of wastewaters collected from two different stations in Northern India. Mutat Res-Gen Tox En 726(1):15–20

    Article  CAS  Google Scholar 

  27. Alam MZ, Ahmad S, Malik A (2011) Prevalence of heavy metal resistance in bacteria isolated from tannery effluents and affected soil. Environ Monit Assess 178(1):281–291

    Article  CAS  PubMed  Google Scholar 

  28. Hughes MF et al (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123(2):305–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wiele TV et al (2010) Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils. Environ Health Perspect 118(7):1004–1009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lu K et al (2014) Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 122(3):284–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jones BV et al (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci 105(36):13580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Valentine JL, Kang HK, Spivey G (1979) Arsenic levels in human blood, urine, and hair in response to exposure via drinking water. Environ Res 20(1):24–32

    Article  CAS  PubMed  Google Scholar 

  33. Wester RC et al (1992) In Vitro percutaneous absorption of cadmium from water and soil into human skin. Toxicol Sci 19(1):1–5

    Article  CAS  Google Scholar 

  34. Wang B, Hu L, Siahaan TJ (2016) Drug delivery: principles and applications. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  35. Ding J et al (2019) Heavy metal-induced co-selection of antibiotic resistance genes in the gut microbiota of collembolans. Sci Total Environ 683:210–215

    Article  CAS  PubMed  Google Scholar 

  36. Chang X et al (2019) Effects of cadmium exposure on the composition and diversity of the intestinal microbial community of common carp (Cyprinus carpio L.). Ecotoxicol Environ Saf 171:92–98

    Article  CAS  PubMed  Google Scholar 

  37. Breton J et al (2013) Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol Toxicol 14:62–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ba Q et al (2017) Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice. Environ Health Perspect 125(3):437–446

    Article  CAS  PubMed  Google Scholar 

  39. Guo X et al (2014) Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere 112:1–8

    Article  CAS  PubMed  Google Scholar 

  40. Dheer R et al (2015) Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism. Toxicol Appl Pharmacol 289(3):397–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao B et al (2017) Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways. Chem Res Toxicol 30(4):996–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yao Q et al (2019) Effects of hexavalent chromium on intestinal histology and microbiota in Bufo gargarizans tadpoles. Chemosphere 216:313–323

    Article  CAS  PubMed  Google Scholar 

  43. Wu B et al (2014) Toxicological effects of dietary nickel chloride on intestinal microbiota. Ecotoxicol Environ Saf 109:70–76

    Article  CAS  PubMed  Google Scholar 

  44. Alghasham A, Salem TA, Meki A-RM (2013) Effect of cadmium-polluted water on plasma levels of tumor necrosis factor-α, interleukin-6 and oxidative status biomarkers in rats: protective effect of curcumin. Food Chem Toxicol 59:160–164

    Article  CAS  PubMed  Google Scholar 

  45. Al-Rmalli SW, Jenkins RO, Haris PI (2012) Dietary intake of cadmium from Bangladeshi foods. J Food Sci 77(1):T26–T33

    Article  CAS  PubMed  Google Scholar 

  46. Jin Y et al (2016) Cadmium exposure to murine macrophages decreases their inflammatory responses and increases their oxidative stress. Chemosphere 144:168–175

    Article  CAS  PubMed  Google Scholar 

  47. Ke S et al (2015) Benchmark dose estimation for cadmium-induced renal effects based on a large sample population from five Chinese provinces. Biomed Environ Sci 28(5):383–387

    CAS  PubMed  Google Scholar 

  48. Solenkova NV et al (2014) Metal pollutants and cardiovascular disease: mechanisms and consequences of exposure. Am Heart J 168(6):812–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fazeli M, Hassanzadeh P, Alaei S (2010) Cadmium chloride exhibits a profound toxic effect on bacterial microflora of the mice gastrointestinal tract. Hum Exp Toxicol 30(2):152–159

    Article  PubMed  CAS  Google Scholar 

  50. Morozzi G et al (1986) Cadmium uptake by growing cells of gram-positive and gram-negative bacteria. Microbios 48(194):27–35

    CAS  PubMed  Google Scholar 

  51. Zhang S et al (2015) Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. Chem Res Toxicol 28(10):2000–2009

    Article  CAS  PubMed  Google Scholar 

  52. Giannelli V et al (2014) Microbiota and the gut-liver axis: bacterial translocation, inflammation and infection in cirrhosis. World J Gastroenterol 20(45):16795–16810

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cox LM et al (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158(4):705–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. RodrÍguez JM et al (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26(1):26050

    PubMed  Google Scholar 

  55. Wu J et al (2016) Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight increases in adult mice. Toxicol Sci 151(2):324–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bae S et al (2014) Plasma choline metabolites and colorectal cancer risk in the Women’s Health Initiative Observational Study. Cancer Res 74(24):7442–7452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lukovac S et al (2014) Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio 5(4):e01438–e01414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Cani PD, Everard A (2014) Akkermansia muciniphila: a novel target controlling obesity, type 2 diabetes and inflammation? Med Sci 30(2):125

    Google Scholar 

  59. Xia J et al (2018) Chronic exposure to low concentrations of lead induces metabolic disorder and dysbiosis of the gut microbiota in mice. Sci Total Environ 631–632:439–448

    Article  PubMed  CAS  Google Scholar 

  60. Djane N-K et al (1999) Chromium speciation in natural waters using serially connected supported liquid membranes. Talanta 48(5):1121–1132

    Article  CAS  PubMed  Google Scholar 

  61. Cotruvo JA (2017) 2017 WHO guidelines for drinking water quality: first addendum to the fourth edition. J—Am Water Work Assoc 109(7):44–51

    Article  Google Scholar 

  62. Younan S et al (2016) Chromium(VI) bioremediation by probiotics. J Sci Food Agric 96(12):3977–3982

    Article  CAS  PubMed  Google Scholar 

  63. Serra D, Almeida LM, Dinis TCP (2018) Dietary polyphenols: a novel strategy to modulate microbiota-gut-brain axis. Trends Food Sci Technol 78:224–233

    Article  CAS  Google Scholar 

  64. Kuehbacher T et al (2008) Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease. J Med Microbiol 57(12):1569–1576

    Article  CAS  PubMed  Google Scholar 

  65. Bor B et al (2016) Phenotypic and physiological characterization of the epibiotic interaction between TM7x and its Basibiont Actinomyces. Microb Ecol 71(1):243–255

    Article  CAS  PubMed  Google Scholar 

  66. McLean JS et al (2013) Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci 110(26):E2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Delafont V et al (2015) Shedding light on microbial dark matter: a TM6 bacterium as natural endosymbiont of a free-living amoeba. Environ Microbiol Rep 7(6):970–978

    Article  CAS  PubMed  Google Scholar 

  68. He X et al (2015) Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proc Natl Acad Sci 112(1):244

    Article  CAS  PubMed  Google Scholar 

  69. Wu G, Xiao X, Feng P, Xie F, Yu Z, Yuan W, Liu P, Li X (2017) Gut remediation: a potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. Sci Rep 7(1):1–2

    Google Scholar 

  70. Brinkman BM et al (2013) Gut microbiota affects sensitivity to acute DSS-induced colitis independently of host genotype. Inflamm Bowel Dis 19(12):2560–2567

    Article  PubMed  Google Scholar 

  71. De Filippis F et al (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65(11):1812

    Article  PubMed  CAS  Google Scholar 

  72. Delzenne NM, Cani PD (2011) Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr 31(1):15–31

    Article  CAS  PubMed  Google Scholar 

  73. Imhann F et al (2018) Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67(1):108

    Article  CAS  PubMed  Google Scholar 

  74. Liu Y et al (2014) Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract. PLoS One 9(2):e85323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Duruibe JO, Ogwuegbu M, Egwurugwu J (2007) Heavy metal pollution and human biotoxic effects. Int J Phy Sci 2(5):112–118

    Google Scholar 

  76. Wang X et al (2017) Toxicity of mineral Chinese medicines containing mercury element. Zhongguo Zhong Yao Za Zhi 42(7):1258–1264

    PubMed  Google Scholar 

  77. Funabashi H (2006) Minamata disease and environmental governance. Int J Jpn Sociol 15(1):7–25

    Article  Google Scholar 

  78. Ruan Y et al (2019) High doses of copper and mercury changed cecal microbiota in female mice. Biol Trace Elem Res 189(1):134–144

    Article  CAS  PubMed  Google Scholar 

  79. Smirnov A et al (2005) Mucin dynamics and microbial populations in chicken small intestine are changed by dietary probiotic and antibiotic growth promoter supplementation. J Nutr 135(2):187–192

    Article  CAS  PubMed  Google Scholar 

  80. Dozois CM, Daigle F, Curtiss R (2003) Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci 100(1):247

    Article  CAS  PubMed  Google Scholar 

  81. Lepage P et al (2011) Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 141(1):227–236

    Article  PubMed  Google Scholar 

  82. Presley LL et al (2010) Bacteria associated with immunoregulatory cells in mice. Appl Environ Microbiol 76(3):936

    Article  CAS  PubMed  Google Scholar 

  83. Richardson JB et al (2018) Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep 8(1):6578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Zhai Q et al (2017) Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice. Sci Bull 62(12):831–840

    Article  CAS  Google Scholar 

  85. Brüssow H (2015) Growth promotion and gut microbiota: insights from antibiotic use. Environ Microbiol 17:2216–2227

    Article  PubMed  Google Scholar 

  86. Du L, Liu W (2012) Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems: a review. Agron Sustain Dev 32:309–327

    Article  CAS  Google Scholar 

  87. Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759

    Article  CAS  PubMed  Google Scholar 

  88. Dong H et al (2016) Occurrence and removal of antibiotics in ecological and conventional wastewater treatment processes: a field study. J Environ Manag 178:11–19

    Article  CAS  Google Scholar 

  89. Ferro G et al (2016) Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2 process. Sci Total Environ 560–561:29–35

    Article  PubMed  CAS  Google Scholar 

  90. Qian M et al (2016) Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China. Sci Total Environ 559:174–181

    Article  CAS  PubMed  Google Scholar 

  91. Demoly P et al (2000) Allergy to macrolide antibiotics. Review of the literature. Presse Med 29:321–326

    CAS  PubMed  Google Scholar 

  92. Pérez-Cobas AE et al (2013) Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62(11):1591

    Article  PubMed  CAS  Google Scholar 

  93. Fröhlich EE et al (2016) Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain Behav Immun 56:140–155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Membrez M et al (2008) Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 22(7):2416–2426

    Article  CAS  PubMed  Google Scholar 

  95. Cho I et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nobel YR et al (2015) Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun 6:7486

    Article  PubMed  Google Scholar 

  97. Wu M et al (2020) Antibiotic-induced dysbiosis of gut microbiota impairs corneal development in postnatal mice by affecting CCR2 negative macrophage distribution. Mucosal Immunol 13(1):47–63

    Article  CAS  PubMed  Google Scholar 

  98. Carvalho BM et al (2012) Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia 55(10):2823–2834

    Article  CAS  PubMed  Google Scholar 

  99. Cani PD et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761

    Article  CAS  PubMed  Google Scholar 

  100. Wang J, MacNeil JD, Kay JF (2011) Chemical analysis of antibiotic residues in food, vol 38. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  101. Schubert AM, Sinani H, Schloss PD (2015) Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile. MBio 6(4):e00974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Buffie CG et al (2012) Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 80(1):62–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Grazul H, Kanda LL, Gondek D (2016) Impact of probiotic supplements on microbiome diversity following antibiotic treatment of mice. Gut Microbes 7(2):101–114

    Article  PubMed  PubMed Central  Google Scholar 

  104. Brooke JS (2012) Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25(1):2–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Buffie CG et al (2015) Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517(7533):205

    Article  CAS  PubMed  Google Scholar 

  106. Fouhy F et al (2012) High-throughput sequencing reveals the incomplete, short-term, recovery of the infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamycin. Antimicrob Agents Chemother 56:5811–5820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Korpela K et al (2016) Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun 7:10410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rea MC et al (2011) Effect of broad-and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci U S A 108:4639–4644

    Article  CAS  PubMed  Google Scholar 

  109. Madigan M-T, Martinko J (2005) Brock biology of microorganisms. Prentice Hall, Upper Saddle River, NJ. isbn:0-13-144329-1

    Google Scholar 

  110. Chaudhury A et al (1999) Enteropathogenicity and antimicrobial susceptibility of new Escherichia spp. J Diar Dis Res 17:85–87

    CAS  Google Scholar 

  111. Pien FD et al (1985) Colonization of human wounds by Escherichia vulneris and Escherichia hermannii. J Clin Microbiol 22:283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jantsch J, Chikkaballi D, Hensel M (2011) Cellular aspects of immunity to intracellular Salmonella enterica. Immunol Rev 240:185–195

    Article  CAS  PubMed  Google Scholar 

  113. Gao K et al (2018) Antibiotics-induced modulation of large intestinal microbiota altered aromatic amino acid profile and expression of neurotransmitters in the hypothalamus of piglets. J Neurochem 146(3):219–234

    Article  CAS  PubMed  Google Scholar 

  114. Barrangou R et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709

    Article  CAS  PubMed  Google Scholar 

  115. Makarova KS et al (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Bohnhoff M, Miller CP (1962) Enhanced susceptibility to salmonella infection in streptomycin-treated mice. J Infect Dis 111(2):117–127

    Article  CAS  PubMed  Google Scholar 

  117. Miller CP, Bohnhoff M, Rifkind D (1956) The effect of an antibiotic on the susceptibility of the mouse’s intestinal tract to Salmonella infection. Trans Am Clin Climatol Assoc 68:51–58

    PubMed  Google Scholar 

  118. Reeves AE et al (2014) The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile infection. Gut Microbes 2(3):145–158

    Article  Google Scholar 

  119. Schubert AM et al (2014) Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls. MBio 5(3):e01021–e01014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Vincent C et al (2013) Reductions in intestinal Clostridiales precede the development of nosocomial Clostridium difficile infection. Microbiome 1(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ng KM et al (2013) Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lee HH et al (2010) Bacterial charity work leads to population-wide resistance. Nature 467:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Toprak E et al (2011) Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet 44:101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Jakobsson HE et al (2010) Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 5(3):e9836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Looft T et al (2012) In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci 109(5):1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dethlefsen L et al (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6(11):e280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Antonopoulos DA et al (2009) Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 77(6):2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jernberg C et al (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1(1):56–66

    Article  CAS  PubMed  Google Scholar 

  129. Jernberg C et al (2010) Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156(11):3216–3223

    Article  CAS  PubMed  Google Scholar 

  130. Jernberg C et al (2005) Monitoring of antibiotic-induced alterations in the human intestinal microflora and detection of probiotic strains by use of terminal restriction fragment length polymorphism. Appl Environ Microbiol 71(1):501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ajslev TA et al (2011) Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes 35:522

    Article  CAS  Google Scholar 

  132. World Health Organization (2017) Health topics: pesticides.

    Google Scholar 

  133. Atwood D, Paisley-Jones C (2017) Pesticides industry sales and usage 2008–2012 market estimates.

    Google Scholar 

  134. Kim KH, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535

    Article  CAS  PubMed  Google Scholar 

  135. Li Z, Jennings A (2017) Worldwide regulations of standard values of pesticides for human health risk control: a review. Int J Environ Res Public Health 14(7):826

    Article  PubMed Central  CAS  Google Scholar 

  136. Abdollahi M et al (2004) Pesticides and oxidative stress: a review. Med Sci Monit 10(6):RA141–RA147

    CAS  PubMed  Google Scholar 

  137. Trapp S, Eggen T (2013) Simulation of the plant uptake of organophosphates and other emerging; pollutants for greenhouse experiments and field conditions. Environ Sci Pollut Res Int 20(6):4018–4029

    Article  CAS  PubMed  Google Scholar 

  138. Joly C et al (2013) Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the simulator of the Human Intestinal Microbial Ecosystem (SHIME®) and in the rat. Environ Sci Pollut Res 20(5):2726–2734

    Article  CAS  Google Scholar 

  139. Poet TS et al (2003) In vitro rat hepatic and intestinal metabolism of the organophosphate pesticides chlorpyrifos and diazinon. Toxicol Sci 72(2):193–200

    Article  CAS  PubMed  Google Scholar 

  140. Condette CJ et al (2015) Chlorpyrifos exposure during perinatal period affects intestinal microbiota associated with delay of maturation of digestive tract in rats. J Pediatr Gastroenterol Nutr 61(1):30–40

    Article  CAS  Google Scholar 

  141. Zhao Y et al (2016) Effects of chlorpyrifos on the gut microbiome and urine metabolome in mouse (Mus musculus). Chemosphere 153:287–293

    Article  CAS  PubMed  Google Scholar 

  142. Dong Y-L et al (2009) Induction of oxidative stress and apoptosis by pentachlorophenol in primary cultures of Carassius carassius hepatocytes. Comp Biochem Phys C 150(2):179–185

    Google Scholar 

  143. Luo Y et al (2009) EPR detection of hydroxyl radical generation and its interaction with antioxidant system in Carassius auratus exposed to pentachlorophenol. J Hazard Mater 171(1):1096–1102

    Article  CAS  PubMed  Google Scholar 

  144. Kan H et al (2015) Correlations of gut microbial community shift with hepatic damage and growth inhibition of carassius auratus induced by pentachlorophenol exposure. Environ Sci Technol 49(19):11894–11902

    Article  CAS  PubMed  Google Scholar 

  145. Nasuti C et al (2016) Changes on fecal microbiota in rats exposed to permethrin during postnatal development. Environ Sci Pollut Res 23(11):10930–10937

    Article  CAS  Google Scholar 

  146. Nasuti C et al (2014) Neonatal exposure to permethrin pesticide causes lifelong fear and spatial learning deficits and alters hippocampal morphology of synapses. J Neurodev Disord 6(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  147. Wu S et al (2018) Exposure to the fungicide propamocarb causes gut microbiota dysbiosis and metabolic disorder in mice. Environ Pollut 237:775–783

    Article  CAS  PubMed  Google Scholar 

  148. Wu S et al (2018) Chronic exposure to fungicide propamocarb induces bile acid metabolic disorder and increases trimethylamine in C57BL/6J mice. Sci Total Environ 642:341–348

    Article  CAS  PubMed  Google Scholar 

  149. Jin C et al (2016) Oral imazalil exposure induces gut microbiota dysbiosis and colonic inflammation in mice. Chemosphere 160:349–358

    Article  CAS  PubMed  Google Scholar 

  150. Xu C et al (2014) Changes in gut microbiota may be early signs of liver toxicity induced by epoxiconazole in rats. Chemotherapy 60(2):135–142

    Article  CAS  PubMed  Google Scholar 

  151. Jin Y et al (2015) Oral exposure of mice to carbendazim induces hepatic lipid metabolism disorder and gut microbiota dysbiosis. Toxicol Sci 147(1):116–126

    Article  CAS  PubMed  Google Scholar 

  152. Liu Q et al (2017) Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice. Environ Pollut 226:268–276

    Article  CAS  PubMed  Google Scholar 

  153. Lozano VL et al (2018) Sex-dependent impact of roundup on the rat gut microbiome. Toxicol Rep 5:96–107

    Article  CAS  PubMed  Google Scholar 

  154. Neel BA, Sargis RM (2011) The paradox of progress: environmental disruption of metabolism and the diabetes epidemic. Diabetes 60(7):1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jin Y et al (2014) Sub-chronically exposing mice to a polycyclic aromatic hydrocarbon increases lipid accumulation in their livers. Environ Toxicol Pharmacol 38(2):353–363

    Article  CAS  PubMed  Google Scholar 

  156. Brandt I et al (1982) Metabolism of 2,4′,5-trichlorobiphenyl: tissue concentrations of methylsulphonyl-2,4′,5-trichlorobiphenyl in germfree and conventional mice. Toxicol Lett 12(4):273–280

    Article  CAS  PubMed  Google Scholar 

  157. Choi Jeong J et al (2013) Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect 121(6):725–730

    Article  PubMed  PubMed Central  Google Scholar 

  158. Cheng SL et al (2018) Gut microbiota modulates interactions between polychlorinated biphenyls and bile acid homeostasis. Toxicol Sci 166(2):269–287

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Ribiere C et al (2016) Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model. Sci Rep 6:31027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chi Y et al (2018) PCBs-high-fat diet interactions as mediators of gut microbiota dysbiosis and abdominal fat accumulation in female mice. Environ Pollut 239:332–341

    Article  CAS  PubMed  Google Scholar 

  161. Zhang L et al (2015) Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ Health Perspect 123(7):679–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lefever DE et al (2016) TCDD modulation of gut microbiome correlated with liver and immune toxicity in streptozotocin (STZ)-induced hyperglycemic mice. Toxicol Appl Pharmacol 304:48–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Duperron S et al (2019) Response of fish gut microbiota to toxin-containing cyanobacterial extracts: a microcosm study on the medaka (oryzias latipes). Environ Sci Technol Let 6(6):341–347

    Article  CAS  Google Scholar 

  164. Robert H et al (2017) Impact of mycotoxins on the intestine: are mucus and microbiota new targets? J Toxicol Environ Health B Crit Rev 20(5):249–275

    Article  CAS  PubMed  Google Scholar 

  165. Reddy KRN et al (2010) An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev 29(1):3–26

    Article  CAS  Google Scholar 

  166. Saint-Cyr MJ et al (2013) Evaluation of an oral subchronic exposure of deoxynivalenol on the composition of human gut microbiota in a model of human microbiota-associated rats. PLoS One 8(11):e80578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Guo M et al (2014) Combination of metagenomics and culture-based methods to study the interaction between ochratoxin A and gut microbiota. Toxicol Sci 141(1):314–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Williams JH et al (2004) Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr 80(5):1106–1122

    Article  CAS  PubMed  Google Scholar 

  169. Wang J et al (2016) Aflatoxin B1 induced compositional changes in gut microbial communities of male F344 rats. Toxicol Sci 150(1):54–63

    Article  CAS  PubMed  Google Scholar 

  170. Zmora N et al (2018) Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174(6):1388–1405. e21

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

No conflict of interest has been reported by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangkai Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, P., Xiao, X., Zhou, T., Li, X. (2020). Effects of the Bio-accumulative Environmental Pollutants on the Gut Microbiota. In: Li, X., Liu, P. (eds) Gut Remediation of Environmental Pollutants. Springer, Singapore. https://doi.org/10.1007/978-981-15-4759-1_4

Download citation

Publish with us

Policies and ethics