Skip to main content

Performance of Composite Coating on Cutting Tools: Coating Technologies, Performance Optimization, and Their Characterization: A Review

  • Conference paper
  • First Online:
Advances in Materials Processing

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Cutting tool development has drawn a lot of attention for the machining of tough to machine materials in the past decade. Conventional cutting tools (such as high-speed steel (HSS), cemented carbide, cubic boron nitride (CBN), etc., have been widely used in the cutting of difficult to machine materials. These cutting tools have limited scope of application due to their wearing during machining, their design, and manufacturing restrictions. To enhance machinability, cutting tools are coated with different nanostructured coating. The indicative properties of such hard coatings are adhesiveness to the substrate, great microhardness, and toughness. Present work reviews the impact of various hard coating (based on Ti, AlN, SiN, and their combinations), forces and surface roughness, and cutting factors (as speed and feed rate) are reviewed. Electrical discharge machining (EDM) is widely used for machining of difficult to machine materials on a large scale, which would be overpriced and impractical to obtain from conventional machining. The cost contribution of tool in the total operation cost of EDM is maximum. Major challenge in the EDM tool is tool wear. Hence, hard coating on the EDM electrode can also be applied in order to restrict the tool wear rate of the EDM electrode, increase the workpiece surface finish and reducing the machining time. In this paper, a coated EDM electrode used for the machining of hard material is also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. López de Lacalle, L.N., Lamikiz, A., Fernández De Larrinoa, J., Azkona, I.: Advanced cutting tools. In: Machining of Hard Materials, pp. 33–86. Springer London, London (2011). https://doi.org/10.1007/978-1-84996-450-0_2

  2. Özbek, N.A., Çiçek, A., Gülesin, M., Özbek, O.: Investigation of the effects of cryogenic treatment applied at different holding times to cemented carbide inserts on tool wear. Int. J. Mach. Tools Manuf. 86, 34–43 (2014). https://doi.org/10.1016/j.ijmachtools.2014.06.007

    Article  Google Scholar 

  3. Serdyuk, Y.D., Semizhon, O.A., Prokopiv, N.M., Petasyuk, G.A., Kharchenko, O.V., Omel’chuk, T.V.: The influence of thermal compression treatment parameters on quality characteristics and wear mechanisms of T5K10 carbide inserts in rough turning. J. Superhard Mater. 33, 120–128 (2011). https://doi.org/10.3103/S1063457611020055

  4. Bushlya, V., Zhou, J., Avdovic, P., Ståhl, J.-E.: Performance and wear mechanisms of whisker-reinforced alumina, coated and uncoated PCBN tools when high-speed turning aged Inconel 718. Int. J. Adv. Manuf. Technol. 66, 2013–2021 (2013). https://doi.org/10.1007/s00170-012-4477-5

    Article  Google Scholar 

  5. Dogra, M., Sharma, V.S., Sachdeva, A., Suri, N.M., Dureja, J.S.: Performance evaluation of CBN, coated carbide, cryogenically treated uncoated/coated carbide inserts in finish-turning of hardened steel. Int. J. Adv. Manuf. Technol. 57, 541–553 (2011). https://doi.org/10.1007/s00170-011-3320-8

    Article  Google Scholar 

  6. Çalışkan, H., Kurbanoğlu, C., Panjan, P., Kramar, D.: Investigation of the performance of carbide cutting tools with hard coatings in hard milling based on the response surface methodology. Int. J. Adv. Manuf. Technol. 66, 883–893 (2013). https://doi.org/10.1007/s00170-012-4374-y

    Article  Google Scholar 

  7. Chen, N., Shen, B., Yang, G., Sun, F.: Tribological and cutting behavior of silicon nitride tools coated with monolayer- and multilayer-microcrystalline HFCVD diamond films. Appl. Surf. Sci. 265, 850–859 (2013). https://doi.org/10.1016/j.apsusc.2012.11.133

    Article  Google Scholar 

  8. Kumar, C.H.R.V., Nair, P.K., Ramamoorthy, B.: Characterization of multilayer PVD nanocoatings deposited on tungsten carbide cutting tools. Int. J. Adv. Manuf. Technol. 38, 622–629 (2008). https://doi.org/10.1007/s00170-007-1059-z

    Article  Google Scholar 

  9. Minevich, A.A., Eizner, B.A., Gick, L.A., Popok, N.N.: Case studies on tribological behavior of coated cutting tools. Tribol. Trans. 43, 740–748 (2000). https://doi.org/10.1080/10402000008982403

    Article  Google Scholar 

  10. Stein, C., Keunecke, M., Bewilogua, K., Chudoba, T., Kölker, W., van den Berg, H.: Cubic boron nitride based coating systems with different interlayers for cutting inserts. Surf. Coatings Technol. 205, S103–S106 (2011). https://doi.org/10.1016/j.surfcoat.2011.03.016

    Article  Google Scholar 

  11. Siow, P.C., A. Ghani, J., Ghazali, M.J., Jaafar, T.R., Selamat, M.A., Che Haron, C.H.: Characterization of TiCN and TiCN/ZrN coatings for cutting tool application. Ceram. Int. 39, 1293–1298 (2013). https://doi.org/10.1016/j.ceramint.2012.07.061

  12. Xing, Y., Deng, J., Li, S., Yue, H., Meng, R., Gao, P.: Cutting performance and wear characteristics of Al2O3/TiC ceramic cutting tools with WS2/Zr soft-coatings and nano-textures in dry cutting. Wear 318, 12–26 (2014). https://doi.org/10.1016/j.wear.2014.06.001

    Article  Google Scholar 

  13. Santecchia, E., Hamouda, A.M.S., Musharavati, F., Zalnezhad, E., Cabibbo, M., Spigarelli, S.: Wear resistance investigation of titanium nitride-based coatings. Ceram. Int. 41, 10349–10379 (2015). https://doi.org/10.1016/j.ceramint.2015.04.152

    Article  Google Scholar 

  14. Jahan, M.P., Wong, Y.S., Rahman, M.: A comparative experimental investigation of deep-hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304). Int. J. Adv. Manuf. Technol. 46, 1145–1160 (2010). https://doi.org/10.1007/s00170-009-2167-8

    Article  Google Scholar 

  15. Uhlmann, E., Rosiwal, S., Bayerlein, K., Röhner, M.: Influence of grain size on the wear behavior of CVD diamond coatings in micro-EDM. Int. J. Adv. Manuf. Technol. 47, 919–922 (2010). https://doi.org/10.1007/s00170-009-2131-7

    Article  Google Scholar 

  16. Uhlmann, E., Roehner, M.: Investigations on reduction of tool electrode wear in micro-EDM using novel electrode materials. CIRP J. Manuf. Sci. Technol. 1, 92–96 (2008). https://doi.org/10.1016/j.cirpj.2008.09.011

    Article  Google Scholar 

  17. Jahan, M.P., Rahman, M., Wong, Y.S.: A review on the conventional and micro-electrodischarge machining of tungsten carbide. Int. J. Mach. Tools Manuf. 51, 837–858 (2011). https://doi.org/10.1016/j.ijmachtools.2011.08.016

    Article  Google Scholar 

  18. Kibria, G., Sarkar, B.R., Pradhan, B.B., Bhattacharyya, B.: Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti–6Al–4V alloy. Int. J. Adv. Manuf. Technol. 48, 557–570 (2010). https://doi.org/10.1007/s00170-009-2298-y

    Article  Google Scholar 

  19. Klocke, F.: Using ultra thin electrodes to produce micro-parts with wire-EDM. J. Mater. Process. Technol. (2004). https://doi.org/10.1016/S0924-0136(04)00214-6

  20. Lee, S.H.H., Li, X.P.P.: Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide. J. Mater. Process. Technol. 115, 344–358 (2001). https://doi.org/10.1016/S0924-0136(01)00992-X

    Article  Google Scholar 

  21. Jahan, M.P., Wong, Y.S., Rahman, M.: A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. J. Mater. Process. Technol. 209, 3956–3967 (2009). https://doi.org/10.1016/j.jmatprotec.2008.09.015

    Article  Google Scholar 

  22. Yu, Z.: Dry electrical discharge machining of cemented carbide. J. Mater. Process. Technol. (2004). https://doi.org/10.1016/S0924-0136(04)00179-7

  23. Kim, C., Kang, M.C., Kim, J.S., Kim, K.H., Shin, B.S., Je, T.J.: Mechanical properties and cutting performance of nanocomposite Cr–Si–N coated tool for green machining. Curr. Appl. Phys. 9, S145–S148 (2009). https://doi.org/10.1016/j.cap.2008.08.054

    Article  Google Scholar 

  24. Suzuki, T., Kato, M., Saito, H., Iizuka, H.: Effect of carbon nanotube (CNT) size on wear properties of Cu-based CNT composite electrodes in electrical discharge machining. J. Solid Mech. Mater. Eng. 5, 348–359 (2011). https://doi.org/10.1299/jmmp.5.348

    Article  Google Scholar 

  25. Suzuki, T., Konno, T.: Improvement in tool life of electroplated diamond tools by Ni-based carbon nanotube composite coatings. Precis. Eng. 38, 659–665 (2014). https://doi.org/10.1016/j.precisioneng.2014.03.003

    Article  Google Scholar 

  26. Soltanieh, M., Aghajani, H., Mahboubi, F., Nekouee, K.A.: Surface characterization of multiple coated H11 hot work tool steel by plasma nitriding and hard chromium electroplating processes. Vacuum 86, 1470–1476 (2012). https://doi.org/10.1016/j.vacuum.2012.01.003

    Article  Google Scholar 

  27. Kurahashi, K., Yanagihara, K., Tani, Y., Sato, H.: Repeatable on-the-machine cutting-edge-forming technology applying composite electroplating and anodic electrolysis. CIRP Ann. Manuf. Technol. 53, 53–56 (2004). https://doi.org/10.1016/S0007-8506(07)60643-X

    Article  Google Scholar 

  28. Park, H.K., Onikura, H., Ohnishi, O., Sharifuddin, A.: Development of micro-diamond tools through electroless composite plating and investigation into micro-machining characteristics. Precis. Eng. 34, 376–386 (2010). https://doi.org/10.1016/j.precisioneng.2009.09.001

    Article  Google Scholar 

  29. Li, H.Y., He, H.B., Han, W.Q., Yang, J., Gu, T., Li, Y.M., Lyu, S.K.: A study on cutting and tribology performances of TiN and TiAlN coated tools. Int. J. Precis. Eng. Manuf. 16, 781–786 (2015). https://doi.org/10.1007/s12541-015-0103-4

  30. Chiou, A.H., Tsao, C.C., Hsu, C.Y.: A study of the machining characteristics of micro EDM milling and its improvement by electrode coating. Int. J. Adv. Manuf. Technol. 78, 1857–1864 (2015). https://doi.org/10.1007/s00170-014-6778-3

    Article  Google Scholar 

  31. Sahin, Y., Sur, G.: The effect of Al2O3, TiN and Ti (C, N) based CVD coatings on tool wear in machining metal matrix composites. Surf. Coatings Technol. 179, 349–355 (2004). https://doi.org/10.1016/S0257-8972(03)00802-8

    Article  Google Scholar 

  32. More, A.S., Jiang, W., Brown, W.D., Malshe, A.P.: Tool wear and machining performance of cBN-TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel. J. Mater. Process. Technol. 180, 253–262 (2006). https://doi.org/10.1016/j.jmatprotec.2006.06.013

    Article  Google Scholar 

  33. Dosbaeva, G.K., El Hakim, M.A., Shalaby, M.A., Krzanowski, J.E., Veldhuis, S.C.: Cutting temperature effect on PCBN and CVD coated carbide tools in hard turning of D2 tool steel. Int. J. Refract. Met. Hard Mater. 50, 1–8 (2015). https://doi.org/10.1016/j.ijrmhm.2014.11.001

    Article  Google Scholar 

  34. Zhang, K., Deng, J., Meng, R., Gao, P., Yue, H.: Effect of nano-scale textures on cutting performance of WC/Co-based Ti55Al45N coated tools in dry cutting. Int. J. Refract. Met. Hard Mater. 51, 35–49 (2015). https://doi.org/10.1016/j.ijrmhm.2015.02.011

    Article  Google Scholar 

  35. Sidorenko, D., Mishnaevsky, L., Levashov, E., Loginov, P., Petrzhik, M.: Carbon nanotube reinforced metal binder for diamond cutting tools. Mater. Des. 83, 536–544 (2015). https://doi.org/10.1016/j.matdes.2015.06.056

    Article  Google Scholar 

  36. Bouzakis, K.D., Bouzakis, E., Kombogiannis, S., Paraskevopoulou, R., Skordaris, G., Makrimallakis, S., Katirtzoglou, G., Pappa, M., Gerardis, S., M’Saoubi, R., Andersson, J.M.: Effect of silicon content on PVD film mechanical properties and cutting performance of coated cemented carbide inserts. Surf. Coatings Technol. 237, 379–389 (2013). https://doi.org/10.1016/j.surfcoat.2013.06.044

    Article  Google Scholar 

  37. Zhang, K., Deng, J., Sun, J., Jiang, C., Liu, Y., Chen, S.: Effect of micro/nano-scale textures on anti-adhesive wear properties of WC/Co-based TiAlN coated tools in AISI 316 austenitic stainless steel cutting. Appl. Surf. Sci. 355, 602–614 (2015). https://doi.org/10.1016/j.apsusc.2015.07.132

    Article  Google Scholar 

  38. Chang, Y.Y., Lai, H.M.: Wear behavior and cutting performance of CrAlSiN and TiAlSiN hard coatings on cemented carbide cutting tools for Ti alloys. Surf. Coatings Technol. 259, 152–158 (2014). https://doi.org/10.1016/j.surfcoat.2014.02.015

    Article  Google Scholar 

  39. Kim, M., Chang, D.Y., Jeong, Y.S., Ro, B.H., Lee, K.H.: The wear resistance of electroless nickel and electroless composite (Ni-PX, X: SiC, Al2O3, diamond) coating layers. J. Korean Inst. Surf. Eng. 27, 193–206 (1994)

    Google Scholar 

  40. Choy, K.L.: Chemical vapour deposition of coatings (2003). https://doi.org/10.1016/S0079-6425(01)00009-3

    Article  Google Scholar 

  41. Vahlas, C., Caussat, B., Serp, P., Angelopoulos, G.N.: Principles and applications of CVD powder technology (2006). https://doi.org/10.1016/j.mser.2006.05.001

    Article  Google Scholar 

  42. Sproul, W.D.: Physical vapor deposition tool coatings. Surf. Coatings Technol. 81, 1–7 (1996). https://doi.org/10.1016/0257-8972(95)02616-9

    Article  Google Scholar 

  43. König, W., Fritsch, R., Kammermeier, D.: Physically vapor deposited coatings on tools: performance and wear phenomena. Surf. Coatings Technol. 49, 316–324 (1991). https://doi.org/10.1016/0257-8972(91)90076-9

    Article  Google Scholar 

  44. Bouzakis, K.D., Michailidis, N., Skordaris, G., Bouzakis, E., Biermann, D., M’Saoubi, R.: Cutting with coated tools: coating technologies, characterization methods and performance optimization. CIRP Ann. Manuf. Technol. 61, 703–723 (2012). https://doi.org/10.1016/j.cirp.2012.05.006

    Article  Google Scholar 

  45. Henderer, W., Xu, F.: Hybrid TiSiN, CrC/C PVD coatings applied to cutting tools. Surf. Coatings Technol. 215, 381–385 (2013). https://doi.org/10.1016/j.surfcoat.2012.06.092

    Article  Google Scholar 

  46. Wu, W., Chen, W., Yang, S., Lin, Y., Zhang, S., Cho, T.Y., Lee, G.H., Kwon, S.C.: Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools. Appl. Surf. Sci. 351, 803–810 (2015). https://doi.org/10.1016/j.apsusc.2015.05.191

    Article  Google Scholar 

  47. Vereschaka, A.A., Grigoriev, S.N., Vereschaka, A.S., Popov, A.Y., Batako, A.D.: Nano-scale multilayered composite coatings for cutting tools operating under heavy cutting conditions. In: Procedia CIRP, pp. 239–244. Elsevier (2014). https://doi.org/10.1016/j.procir.2014.03.070

  48. Manjaiah, M., Narendranath, S., Basavarajappa, S., Gaitonde, V.N.: Effect of electrode material in wire electro discharge machining characteristics of Ti50Ni50-xCux shape memory alloy. Precis. Eng. 41, 68–77 (2015). https://doi.org/10.1016/j.precisioneng.2015.01.008

    Article  Google Scholar 

  49. Bansal, S.A., Singh, A.P., Kumar, S.: Synergistic effect of graphene and carbon nanotubes on mechanical and thermal performance of polystyrene. Mater. Res. Express. 5, 075602 (2018). https://doi.org/10.1088/2053-1591/aacfc0

    Article  Google Scholar 

  50. Raj, S.O.N., Prabhu, S.: Analysis of multi objective optimisation using TOPSIS method in EDM process with CNT infused copper electrode. Int. J. Mach. Mach. Mater. 19, 76–94 (2017). https://doi.org/10.1504/IJMMM.2017.081190

    Article  Google Scholar 

  51. Bansal, S.A., Singh, A.P., Kumar, S.: High strain rate behavior of epoxy graphene oxide nanocomposites. Int. J. Appl. Mech. 10, 1850072 (2018). https://doi.org/10.1142/S1758825118500722

    Article  Google Scholar 

  52. Bansal, S.A., Singh, A.P., Kumar, S.: Reinforcing graphene oxide nanoparticles to enhance viscoelastic performance of epoxy nanocomposites. J. Nanosci. Nanotechnol. 19, 4000–4006 (2019). https://doi.org/10.1166/jnn.2019.16336

    Article  Google Scholar 

  53. Twinkle, Singh, K., Bansal, S.A., Kumar, S.: Graphene oxide (GO)/copper doped hematite (α-Fe2O3) nanoparticles for organic pollutants degradation applications at room temperature and neutral pH. Mater. Res. Express. 6, 115026 (2019). https://doi.org/10.1088/2053-1591/ab4459

  54. Zeller, F., Müller, C., Miranzo, P., Belmonte, M.: Exceptional micromachining performance of silicon carbide ceramics by adding graphene nanoplatelets. J. Eur. Ceram. Soc. 37, 3813–3821 (2017)

    Article  Google Scholar 

  55. Bansal, S.A., Singh, A.P., Kumar, A., Kumar, S., Kumar, N., Goswamy, J.K.: Improved mechanical performance of bisphenol-A graphene-oxide nano-composites. J. Compos. Mater. 52, 2179–2188 (2018). https://doi.org/10.1177/0021998317741952

    Article  Google Scholar 

  56. Bansal, S.A., Singh, A.P., Kumar, S.: 2D materials: graphene and others. In: AIP Conference Proceedings, p. 020459 (2016). https://doi.org/10.1063/1.4946510

  57. Benninghoven, A.: Characterization of coatings. Thin Solid Films 39, 3–23 (1976). https://doi.org/10.1016/0040-6090(76)90620-9

    Article  Google Scholar 

  58. Bouzakis, K.D., Michailidis, N., Hadjiyiannis, S., Skordaris, G., Erkens, G.: The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress-strain laws by nanoindentation. Mater. Charact. 49, 149–156 (2002). https://doi.org/10.1016/S1044-5803(02)00361-3

    Article  Google Scholar 

  59. Bansal, S.A., Singh, A.P., Kumar, S., Bansal, S.A.: Reinforcing graphene oxide nano particles to enhance. J. Nanosci. Nanotechnol. 19, 1–7 (2019). https://doi.org/10.1166/jnn.2019.16336

    Article  Google Scholar 

  60. Bouzakis, K.D., Michailidis, N., Skordaris, G.: Hardness determination by means of a FEM-supported simulation of nanoindentation and applications in thin hard coatings. Surf. Coatings Technol. 200, 867–871 (2005). https://doi.org/10.1016/j.surfcoat.2005.02.122

    Article  Google Scholar 

  61. Beake, B.D.: Evaluation of the fracture resistance of DLC coatings on tool steel under dynamic loading. Surf. Coatings Technol. 198, 90–93 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.048

    Article  Google Scholar 

  62. Beake, B.D., Smith, J.F., Gray, A., Fox-Rabinovich, G.S., Veldhuis, S.C., Endrino, J.L.: Investigating the correlation between nano-impact fracture resistance and hardness/modulus ratio from nanoindentation at 25–500 °C and the fracture resistance and lifetime of cutting tools with Ti1-xAlxN (x = 0.5 and 0.67) PVD coatings in milling operations. Surf. Coatings Technol. 201, 4585–4593 (2007). https://doi.org/10.1016/j.surfcoat.2006.09.118

  63. Beake, B.D., Fox-Rabinovich, G.S., Veldhuis, S.C., Goodes, S.R.: Coating optimisation for high speed machining with advanced nanomechanical test methods. Surf. Coatings Technol. 203, 1919–1925 (2009). https://doi.org/10.1016/j.surfcoat.2009.01.025

    Article  Google Scholar 

  64. Fateh, N., Fontalvo, G.A., Gassner, G., Mitterer, C.: Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings. Wear 262, 1152–1158 (2007). https://doi.org/10.1016/j.wear.2006.11.006

    Article  Google Scholar 

  65. Rodríguez, R.J., García, J.A., Medrano, A., Rico, M., Sánchez, R., Martínez, R., Labrugère, C., Lahaye, M., Guette, A.: Tribological behaviour of hard coatings deposited by arc-evaporation PVD. In: Vacuum, pp. 559–566 (2002). https://doi.org/10.1016/S0042-207X(02)00248-8

  66. Wagner, J., Mitterer, C., Penoy, M., Michotte, C., Wallgram, W., Kathrein, M.: The effect of deposition temperature on microstructure and properties of thermal CVD TiN coatings. Int. J. Refract. Met. Hard Mater. 26, 120–126 (2008). https://doi.org/10.1016/j.ijrmhm.2007.01.010

    Article  Google Scholar 

  67. SPIE, Proceedings of: Front Matter: Volume 6606. In: Advanced Laser Technologies 2006, pp. 660601-660601–14. SPIE (2007). https://doi.org/10.1117/12.739509

  68. Liu, A., Deng, J., Cui, H., Chen, Y., Zhao, J.: Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings. Int. J. Refract. Met. Hard Mater. 31, 82–88 (2012). https://doi.org/10.1016/j.ijrmhm.2011.09.010

    Article  Google Scholar 

  69. Lin, J.F., Horng, J.H.: Analysis of the tribological behaviour and wear mechanisms of titanium nitride coating. Wear. 171, 59–69 (1994). https://doi.org/10.1016/0043-1648(94)90348-4

  70. Hainsworth, S.V., Soh, W.C.: The effect of the substrate on the mechanical properties of TiN coatings. Surf. Coatings Technol. 163–164, 515–520 (2003). https://doi.org/10.1016/S0257-8972(02)00652-7

    Article  Google Scholar 

  71. Guu, Y.Y., Lin, J.F., Ai, C.F.: The tribological characteristics of titanium nitride coatings part I. Coating thickness effects. Wear 194, 12–21 (1996). https://doi.org/10.1016/0043-1648(95)06630-6

    Article  Google Scholar 

  72. Guu, Y.Y., Lin, J.F.: The tribological characteristics of titanium nitride coatings Part II. Comparisons of two deposition processes. Wear 194, 22–29 (1996). https://doi.org/10.1016/0043-1648(95)06631-4

    Article  Google Scholar 

  73. Azushima, A., Tanno, Y., Iwata, H., Aoki, K.: Coefficients of friction of TiN coatings with preferred grain orientations under dry condition. Wear 265, 1017–1022 (2008). https://doi.org/10.1016/j.wear.2008.02.019

    Article  Google Scholar 

  74. Nordin, M., Larsson, M., Hogmark, S.: Wear resistance of multilayered PVD TiN/TaN on HSS. In: Surface and Coatings Technology, pp. 528–534 (1999). https://doi.org/10.1016/S0257-8972(99)00493-4

  75. Nordin, M., Larsson, M., Hogmark, S.: Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide. Surf. Coatings Technol. 106, 234–241 (1998). https://doi.org/10.1016/S0257-8972(98)00544-1

    Article  Google Scholar 

  76. Gåhlin, R., Larsson, M., Hedenqvist, P., Jacobson, S., Hogmark, S.: The crater grinder method as a means for coating wear evaluation—an update. Surf. Coatings Technol. 90, 107–114 (1997). https://doi.org/10.1016/S0257-8972(96)03101-5

    Article  Google Scholar 

  77. Luo, Q., Hovsepian, P.E., Lewis, D.B., Münz, W.D., Kok, Y.N., Cockrem, J., Bolton, M., Farinotti, A.: Tribological properties of unbalanced magnetron sputtered nano-scale multilayer coatings TiAlN/VN and TiAlCrYN deposited on plasma nitrided steels. Surf. Coatings Technol. 193, 39–45 (2005). https://doi.org/10.1016/j.surfcoat.2004.07.058

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mehta, V., Kumar, R., Kumar, H. (2020). Performance of Composite Coating on Cutting Tools: Coating Technologies, Performance Optimization, and Their Characterization: A Review. In: Singh, S., Prakash, C., Ramakrishna, S., Krolczyk, G. (eds) Advances in Materials Processing . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4748-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4748-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4747-8

  • Online ISBN: 978-981-15-4748-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics