Skip to main content

Wettability Analysis of Polyetheretherketone-Based Nanocomposites

  • Conference paper
  • First Online:
Advances in Materials Processing

Abstract

Bioactivity of implant’s surface depends largely upon surface energy of biomaterials. Surface energy is measured by the wettability or fluid contact angle. The surface energy and protein adsorption on surface of bioinert material can be enhanced by making composite with nanomaterials. PEEK is a biocompatible but bioinert thermoplastic polymer having mechanical properties close to human bone. But the lack of bioactivity hinders its regular use in orthopedic and other implants. The reinforcement of PEEK with nano hdroxyapetite and multiwall carbon tube has potential to make the hydrophilic and bioactive nanocomposite. It is observed that PEEK–MWCNT samples’ water contact angle decreased by 24.52% at 3% MWCNT composition by weight. While the water contact angle of PEEK–nHA samples keep on decreasing with increasing composition and reached to 41.13° (± 1.99) at 35% nHA composition by weight, observed the 38.77% decrement. PEEK became more hydrophilic by making the composite with nanoparticles of hydroxyapetite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams, D.: Polyetheretherketone for long-term implantable devices. Med. Device Technol. 19(1), 8–10 (2008)

    Google Scholar 

  2. Kurtz, S.M., Devine, J.N.: PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32), 4845–4869 (2007)

    Article  Google Scholar 

  3. He, M., Chen, X., Guo, Z., Qiu, X., Yang, Y., Su, C., et al.: Super tough graphene oxide reinforced polyetheretherketone for potential hard tissue repair applications. Compos. Sci. Technol. 174, 194–201 (2019)

    Article  Google Scholar 

  4. Wang, H., Xu, M., Zhang, W., Kwok, D.T.K., Jiang, J., Wu, Z., et al.: Mechanical and biological characteristics of diamond-like carbon coated poly aryl-ether-ether-ketone. Biomaterials 31(32), 8181–8187 (2010)

    Article  Google Scholar 

  5. Kurtz, S.M., Lanman, T.: Dynamic stabilization and semirigid PEEK rods for spinal fusion. In: PEEK Biomaterials Handbook. Elsevier, pp. 281–289 (2019)

    Google Scholar 

  6. Mishra, S., Chowdhary, R.: PEEK materials as an alternative to titanium in dental implants: a systematic review. Clin. Implant. Dent. Relat. Res. 21(1), 208–222 (2019)

    Article  Google Scholar 

  7. Murugan, R., Ramakrishna, S.: Development of nanocomposites for bone grafting. Compos Sci Technol. 65(15–16), 2385–2406 (2005)

    Article  Google Scholar 

  8. Ramakrishna, S., Mayer, J., Wintermantel, E., Leong, K.W.: Biomedical applications of polymer-composite materials: a review. Compos. Sci. Technol. 61(9), 1189–1224 (2001)

    Article  Google Scholar 

  9. Bahmani, A., Comeau, P.A., Montesano, J., Willett, T.L.: Extrudable hydroxyapatite/plant oil-based biopolymer nanocomposites for biomedical applications: Mechanical testing and modeling. Mater. Des. 174, 107790 (2019)

    Article  Google Scholar 

  10. Li, K., Yeung, C.Y., Yeung, K.W.K., Tjong, S.C.: Sintered hydroxyapatite/polyetheretherketone nanocomposites: mechanical behavior and biocompatibility. Adv. Eng. Mater. 14(4), B155–B165 (2012)

    Article  Google Scholar 

  11. Bansal, S.A., Singh, A.P., Kumar, S.: Synergistic effect of graphene and carbon nanotubes on mechanical and thermal performance of polystyrene. Mater. Res. Express. 5(7), 75602 (2018)

    Article  Google Scholar 

  12. Bai, Y., Shen, B., Zhang, S., Zhu, Z., Sun, S., Gao, J., et al.: Mechanical energy: storage of mechanical energy based on carbon nanotubes with high energy density and power density (Adv. Mater. 9/2019). Adv. Mater. 31(9), 1970064 (2019)

    Google Scholar 

  13. Balasundaram, G., Webster, T.J.: An overview of nano-polymers for orthopedic applications. Macromol. Biosci. 7(5), 635–642 (2007)

    Article  Google Scholar 

  14. von der Mark, K., Park, J.: Engineering biocompatible implant surfaces. Part II: Cellular recognition of biomaterial surfaces: Lessons from cell-matrix interactions. Prog. Mater. Sci. 58, 327–381 (2012)

    Google Scholar 

  15. Durrieu, M.-C., Pallu, S., Guillemot, F., Bareille, R., Amédée, J., Baquey, C.H., et al.: Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion. J. Mater. Sci. Mater. Med. 15(7), 779–786 (2004)

    Article  Google Scholar 

  16. Thakral, GK., Thakral, R., Sharma, N., Seth, J., Vashisht, P.: Nanosurface–the future of implants. J. Clin. Diagnostic Res. JCDR. 8(5), ZE07 (2014)

    Google Scholar 

  17. Webster, T.J., Ergun, C., Doremus, R.H., Siegel, R.W., Bizios, R.: Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res. An Off J Soc Biomater Japanese Soc Biomater Aust Soc Biomater Korean Soc Biomater. 51(3), 475–483 (2000)

    Google Scholar 

  18. Kumar, M., Kumar, R., Kumar, S., Prakash, C.: Biomechanical properties of orthopedic and dental implants: a comprehensive review. In: Handbook of Research on Green Engineering Techniques for Modern Manufacturing. IGI Global, pp. 1–13 (2019)

    Google Scholar 

  19. Ma, R., Tang, T.: Current strategies to improve the bioactivity of PEEK. Int. J. Mol. Sci. 15(4), 5426–5445 (2014)

    Article  MathSciNet  Google Scholar 

  20. Wang, L., He, S., Wu, X., Liang, S., Mu, Z., Wei, J., et al.: Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials [Internet]. 35(25), 6758–6775. Available from: http://dx.doi.org/10.1016/j.biomaterials.2014.04.085 (2014)

  21. Majeed, S., Fierro, D., Buhr, K., Wind, J., Du, B., Boschetti-de-Fierro, A., et al.: Multi-walled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN) ultrafiltration membranes. J. Memb. Sci. 403, 101–109 (2012)

    Article  Google Scholar 

  22. Choi, J.-H., Jegal, J., Kim, W.-N.: Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J. Memb. Sci. 284(1–2), 406–415 (2006)

    Article  Google Scholar 

  23. Xu, A., Liu, X., Gao, X., Deng, F., Deng, Y., Wei, S.: Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite biocomposite. Mater. Sci. Eng. C. [Internet] 48, 592–598. Available from: http://dx.doi.org/10.1016/j.msec.2014.12.061 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjeet Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, M., Kumar, R., Kumar, S. (2020). Wettability Analysis of Polyetheretherketone-Based Nanocomposites. In: Singh, S., Prakash, C., Ramakrishna, S., Krolczyk, G. (eds) Advances in Materials Processing . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4748-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4748-5_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4747-8

  • Online ISBN: 978-981-15-4748-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics