Skip to main content

Experimental Investigation of Surface Integrity and Machining Characteristics of Ti–6Al–4V Alloy Machined by Wire-EDM Process

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Ti–6Al–4V alloy has been widely used in biomedical applications such as implants, screws, plates, and so on. The key parameters for implant stability are surface integrity (surface roughness and surface topography). In this study, experimental study on the surface integrity and machining characteristics of Ti–6Al–4V alloy machined by wire electrical discharge machining (W-EDM) has been studied. The research was planned using the methods of Taguchi and the orthogonal range of L-27 was chosen. The effect of W-EDM system parameters, such as peak current, pulse length, pulse frequency, wire feed, and spark gap, sets voltage on the machining and surface characteristics of material removal rate (MRR) and surface roughness (SR) along with machined surface topography. Such parameters have been shown to have a significant influence on the characteristics of the output response, and rises in MRR and SR with peak current.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T Zaman, H.A., Safian, S., Idris, M.H., Kamarudin, A.: Metallic biomaterial for medical implant applications: a review. Appl. Mech. Mater. 735, 19–25 (2015). www.scientific.net/AMM.735.19

  2. Niinomi, M., Narushima, T., Naka, M. Advances in Metallic Biomaterials, p. 348. Springer Berlin Heidelberg, Berlin, Germany (2015)

    Google Scholar 

  3. Pramanik, A.: Problems and solutions in machining of titanium alloys. Int. J. Adv. Manuf. Technol. 70(5), 919–928 (2014). https://doi.org/10.1007/s00170-013-5326-x

    Article  Google Scholar 

  4. Klocke, F., Zeis, M., Klink, A., Veselovac, D.: Technological and economical comparison of roughing strategies via milling, EDM and ECM for titanium-and nickel-based blisks. Procedia CIRP 2(1), 98–101 (2012). https://doi.org/10.1016/j.cirpj.2013.02.008

    Article  Google Scholar 

  5. Andrew Y.C. Nee.: Handbook of Manufacturing Engineering and Technology, 3485 pp. Springer, London (2015)

    Google Scholar 

  6. Kumar, S.; Singh, R.; Batish, A,; Singh, T.P. Electric discharge machining of titanium and its alloys: a review. Int. J. Mach. Mach. Mater. 11(1), 84–111 (2012). https://doi.org/10.1504/ijmmm.2012.044922

  7. Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S.: Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Mater. Manuf. Processes 32(3), 274–285 (2017)

    Article  Google Scholar 

  8. Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S., Aggarwal, A.: Electric discharge machining—a potential choice for surface modification of metallic implants for orthopedic applications: A review. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(2), 331–353 (2016)

    Article  Google Scholar 

  9. Peng, P.W., Ou, K.L., Lin, H.C., Pan, Y.N., Wang, C.H.: Effect of electrical-discharging on formation of nanoporous biocompatible layer on titanium. J. Alloy. Compd. 492(1–2), 625–630 (2010). https://doi.org/10.1016/j.jallcom.2009.11.197

    Article  Google Scholar 

  10. Yang, T.S., Huang, M.S., Wang, M.S., Lin, M.H., Tsai, M.Y., Wang, P.Y.: Effect of electrical discharging on formation of nanoporous biocompatible layer on Ti-6Al-4V alloys. Implant dentistry 22(4), 374–379 (2013). https://doi.org/10.1097/ID.0b013e31829a170a

    Article  Google Scholar 

  11. Bin, T.C., Xin, L.D., Zhan, W., Yang, G.: Electro-spark alloying using graphite electrode on titanium alloy surface for biomedical applications. Appl. Surf. Sci. 257(15), 6364–6371 (2011). https://doi.org/10.1016/j.apsusc.2011.01.120

    Article  Google Scholar 

  12. Harcuba, P., Bačakova, L., Strasky, J., Bačakova, M., Novotna, K., Janeček, M.: Surface treatment by electric discharge machining of Ti–6Al–4V alloy for potential application in orthopaedics. J. Mech. Behav. Biomed. Mater. 7, 96–105 (2012). https://doi.org/10.1016/j.jmbbm.2011.07.001

    Article  Google Scholar 

  13. Janecek, M., Novy, F., Strasky, J., Harcuba, P., Wagner, L.: Fatigue endurance of Ti-6Al-4V alloy with electro-eroded surface for improved bone in-growth. J. Mech. Behav. Biomed. Mater. 4, 417–422 (2011). https://doi.org/10.1016/j.jmbbm.2010.12.001

    Article  Google Scholar 

  14. Strasky, J., Janecek, M., Harcuba, P., et al.: The effect of microstructure on fatigue performance of Ti–6Al–4V alloy after EDM surface treatment for application in orthopaedics. J. Mech. Behav. Biomed. Mater. 4, 1955–1962 (2011). https://doi.org/10.1016/j.jmbbm.2011.06.012

    Article  Google Scholar 

  15. Goswami, A., Kumar, J.: Optimization in wire-cut EDM of nimonic-80A using Taguchi’s approach and utility concept. Eng. Sci. Technol. Int. J. 17(4), 236–246 (2014)

    Google Scholar 

  16. Shabgard, M.R., Alenabi, H.: Ultrasonic assisted electrical discharge machining of Ti–6Al–4V alloy. Mater. Manuf. Processes 30(8), 991–1000 (2015). https://doi.org/10.1080/10426914.2015.1004686

    Article  Google Scholar 

  17. Dwivedi, A.P., Choudhury, S.K.: Effect of tool rotation on MRR, TWR and surface integrity of AISI-D3 steel using rotary EDM process. Mater. Manuf. Processes (2016). https://doi.org/10.1080/10426914.2016.1140198

    Article  Google Scholar 

  18. Pirani, C., Iacono, F., Generali, L., Sassatelli, P., Nucci, C., Lusvarghi, L., Gandolfi, M.G., Prati, C.: HyFlex EDM: superficial features, metallurgical analysis and fatigue resistance of innovative electro discharge machined NiTi rotary instruments. Int. Endod. J. (2015). https://doi.org/10.1111/iej.12470

    Article  Google Scholar 

  19. Krishna, M.E., Patowari, P.K.: Parametric study of electric discharge coating using powder metallurgical green compact electrodes. Mater. Manuf. Processes 29(9), 1131–1138 (2014). https://doi.org/10.1080/10426914.2014.930887

    Article  Google Scholar 

  20. Dhakar, K., Dvivedi, A.: Parametric Evaluation on near-dry electric discharge machining. Mater. Manuf. Processes 31(4), 413–421 (2016)

    Article  Google Scholar 

  21. Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S.: Processing and characterization of novel biomimetic nanoporous bioceramic surface on β-Ti implant by powder mixed electric discharge machining. J. Mater. Eng. Perform. (2015). https://doi.org/10.1007/s11665-015-1619-6

    Article  Google Scholar 

  22. Chander Prakash, Sunpreet Singh, Pabla, B.S.: Multi-objective optimization of EDM parameters to deposit HA-containing coating on Mg–Zn–Mn alloy using particle swarm optimization. Vacuum 158, 180–190 (2018)

    Google Scholar 

  23. Chander Prakash, Sunpreet Singh, Pabla, B.S., Uddin, M.S.: Synthesis, characterization, corrosion and bioactivity investigation of nano-HA coating deposited on biodegradable Mg–Zn–Mn alloy. Sur. Coat. Technol. 346, 9–18 (2018)

    Google Scholar 

  24. Chander Prakash and M. S. Uddin, “Surface modification of β-phase Ti implant by hydroxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity. Surf. Coat. Technol. Part A 236, 134–145 (2017)

    Google Scholar 

  25. Chander Prakash, Kansal, H.K., Pabla, B.S., Sanjeev Puri: Effect of surface nano-porosities fabricated by powder mixed electric discharge machining on bone-implant interface: an experimental and finite element study. Nanosci. Nanotechnol. Lett. 8(10), 815–826 (2016). https://doi.org/10.1166/nnl.2016.2255

  26. Chander Prakash, Kansal, H.K., Pabla, B.S., Sanjeev Puri: Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology. J. Mech. Sci. Technol. 30(9), 4195–4204 (2016). https://doi.org/10.1007/s12206-016-0831-0

  27. Chander Prakash, H.K. Kansal, B.S. Pabla, and Sanjeev Puri: Powder mixed electric discharge machining an innovative surface modification technique to enhance fatigue performance and bioactivity of β-Ti implant for orthopaedics application. J. Comput. Inf. Sci. Eng. 14(4), 1–9, 2016. https://doi.org/10.1115/1.4033901

  28. Chander Prakash, H.K. Kansal, B.S., Sanjeev Puri: Potential of powder mixed electric discharge machining to enhance the wear and tribological performance of β-Ti implant for orthopedic applications. J. Nanoeng. Nanomanuf. 5(4), 261–269 (2015)

    Google Scholar 

  29. Kuriachen, B., Lijesh, K.P. and Kuppan, P.: Multi response optimization and experimental investigations into the impact of wire EDM on the tribological properties of Ti–6Al–4V. Trans. Indian Inst. Met., 1–11 (2018)

    Google Scholar 

  30. Rahman, S.S., Ashraf, M.Z.I., Bashar, M.S., Kamruzzaman, M., Amin, A.N., Hossain, M.M.: Crystallinity, surface morphology, and chemical composition of the recast layer and rutile-TiO2 formation on Ti–6Al–4V ELI by wire-EDM to enhance biocompatibility. Int. J. Adv. Manuf. Technol. 93(9–12), 3285–3296 (2017)

    Article  Google Scholar 

  31. Klocke, F., Schwade, M., Klink, A., Kopp, A.: EDM machining capabilities of magnesium (Mg) alloy WE43 for medical applications. Procedia Eng. 19, 190–195 (2011). https://doi.org/10.1016/j.proeng.2011.11.100

    Article  Google Scholar 

  32. Razak, M.A., Abdul-Rani, A.M.; Rao, T.V.V.L.N., Pedapati, S.R., Kamal, S.: Electrical discharge machining on biodegradable AZ31 magnesium alloy using taguchi method. Procedia Eng. 148, 916–922 (2016). https://doi.org/10.1016/j.proeng.2016.06.501

  33. Klocke, F., Schwade, M., Klink, A., Kopp, A.: Influence of electro discharge machining of biodegradable magnesium on the biocompatibility. Procedia CIRP 5, 88–93 (2013). https://doi.org/10.1016/j.procir.2013.01.018

    Article  Google Scholar 

  34. Ponappa, K., Aravindan, S., Rao, P.V., Ramkumar, J., Gupta, M.: The effect of process parameters on machining of magnesium nano alumina composites through EDM. Int. J. Adv. Manuf. Technol. 46, 1035–1042 (2010). https://doi.org/10.1007/s00170-009-2158-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malik, S., Singla, V. (2020). Experimental Investigation of Surface Integrity and Machining Characteristics of Ti–6Al–4V Alloy Machined by Wire-EDM Process. In: Singh, S., Prakash, C., Ramakrishna, S., Krolczyk, G. (eds) Advances in Materials Processing . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4748-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4748-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4747-8

  • Online ISBN: 978-981-15-4748-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics