Skip to main content

Clinical Evaluation of Plasma Decoy Receptor 3 Levels in Silicosis

  • Chapter
  • First Online:
Allergy and Immunotoxicology in Occupational Health - The Next Step

Abstract

Silicosis (SIL) is known to complicate various autoimmune diseases such as rheumatoid arthritis and systemic sclerosis (SSc). To investigate the immunological alterations in SIL, plasma decoy receptor 3 (DcR3) levels were measured. Additionally, correlation studies, multiple regression analysis, and factor analysis were performed using various clinical parameters including respiratory and exposure items, and immunological parameters such as cytokine levels and titers of various autoantibodies detected in SIL subjects. Although actual DcR3 values in SIL and SSc subjects were higher than those in HV, since age was the confounding factor, there were no significant differences. However, in terms of the role of DcR3 in SIL, positive correlations were found between DcR3 and TGF-β or soluble IL-2 receptor (sIL-2R). Multiple regression analysis showed a close and positive relation in SIL between DcR3 and G-CSF, and TGF-β and CENP-B antibodies. Finally, factor analysis indicated that DcR3 values were related to ANA and ANCA-antibodies, as well as G-CSF and IL-6. These data suggested that DcR3 could potentially be utilized as a representative marker of immunological dysfunction in SIL. Further studies are required to explore the cellular and molecular roles of DcR3, and to evaluate the clinical efficacy of utilizing DcR3 measurements for the early detection of complicated autoimmune diseases in SIL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang Yuh-Chin T, Ghio AJ, Maier LA, editors. A clinical guide to occupational and environmental lung diseases (respiratory medicine). New York, NY: Humana Press; 2012.

    Google Scholar 

  2. Graham WG. Silicosis. Clin Chest Med. 1992;13(2):253–67.

    CAS  PubMed  Google Scholar 

  3. Morgan WK. The pneumoconioses. Curr Opin Pulm Med. 1995;1(2):82–8.

    CAS  PubMed  Google Scholar 

  4. Wagner GR. Asbestosis and silicosis. Lancet. 1997;349(9061):1311–13115. https://doi.org/10.1016/S0140-6736(96)07336-9.

    Article  CAS  PubMed  Google Scholar 

  5. Castranova V, Vallyathan V. Silicosis and coal workers’ pneumoconiosis. Environ Health Perspect. 2000;108(S4):675–84. https://doi.org/10.1289/ehp.00108s4675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9(8):847–56. https://doi.org/10.1038/ni.1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuroda E, Ishii KJ, Uematsu S, Ohata K, Coban C, Akira S, Aritake K, Urade Y, Morimoto Y. Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity. 2011;34(4):514–26. https://doi.org/10.1016/j.immuni.2011.03.019.. Epub 2011 Apr 14

    Article  CAS  PubMed  Google Scholar 

  8. Peeters PM, Perkins TN, Wouters EF, Mossman BT, Reynaert NL. Silica induces NLRP3 inflammasome activation in human lung epithelial cells. Part Fibre Toxicol. 2013;10:3. https://doi.org/10.1186/1743-8977-10-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heppleston AG. Silica and asbestos: contrasts in tissue response. Ann N Y Acad Sci. 1979;330:725–44.

    Article  CAS  PubMed  Google Scholar 

  10. Lapp NL, Castranova V. How silicosis and coal workers’ pneumoconiosis develop - a cellular assessment. Occup Med. 1993;8(1):35–56.

    CAS  PubMed  Google Scholar 

  11. Privalova LI, Katsnelson BA, Sharapova NY, Kislitsina NS. On the relationship between activation and breakdown of macrophages in the pathogenesis of silicosis (an overview). Med Lav. 1995;86(6):511–21.

    CAS  PubMed  Google Scholar 

  12. Mossman BT, Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med. 1998;157(5Pt1):1666–80. https://doi.org/10.1164/ajrccm.157.5.9707141.

    Article  CAS  PubMed  Google Scholar 

  13. IARC. IARC monographs on the evaluation of carcinogenic risks to humans, silica, some silicates, coal dust and para-aramid fibrils, vol. 68. Geneva: WHO Press; 1997.

    Google Scholar 

  14. Caplan A. Certain unusual radiological appearances in the chest of coal-miners suffering from rheumatoid arthritis. Thorax. 1953;8(1):29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uber CL, McReynolds RA. Immunotoxicology of silica. Crit Rev Toxicol. 1982;10(4):303–19. https://doi.org/10.3109/10408448209003370.

    Article  CAS  PubMed  Google Scholar 

  16. Steenland K, Goldsmith DF. Silica exposure and autoimmune diseases. Am J Ind Med. 1995;28(5):603–8.

    Article  CAS  PubMed  Google Scholar 

  17. Parks CG, Conrad K, Cooper GS. Occupational exposure to crystalline silica and autoimmune disease. Environ Health Perspect. 1997;107(S5):793–802. https://doi.org/10.1289/ehp.99107s5793.

    Article  Google Scholar 

  18. Cooper GS, Miller FW, Germolec DR. Occupational exposures and autoimmune diseases. Int Immunopharmacol. 2002;2(2–3):303–13.

    Article  CAS  PubMed  Google Scholar 

  19. Gregorini G, Tira P, Frizza J, et al. ANCA-associated diseases and silica exposure. Clin Rev Allergy Immunol. 1997;15(1):21–40.

    Article  CAS  PubMed  Google Scholar 

  20. Saeki T, Fujita N, Kourakata H, Yamazaki H, Miyamura S. Two cases of hypertrophic pachymeningitis associated with myeloperoxidase antineutrophil cytoplasmic autoantibody (MPO-ANCA)-positive pulmonary silicosis in tunnel workers. Clin Rheumatol. 2004;23(1):76–80. https://doi.org/10.1007/s10067-003-0815-1.

    Article  PubMed  Google Scholar 

  21. Gómez-Puerta JA, Gedmintas L, Costenbader KH. The association between silica exposure and development of ANCA-associated vasculitis: systematic review and meta-analysis. Autoimmun Rev. 2013;12:1129–35.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hamilton JA. Nondisposable materials, chronic inflammation, and adjuvant action. J Leukoc Biol. 2013;12(12):1129–35. https://doi.org/10.1016/j.autrev.2013.06.016.

    Article  CAS  Google Scholar 

  23. Hayashi H, Miura Y, Maeda M, Murakami S, Kumagai N, Nishimura Y, Kusaka M, Urakami K, Fujimoto W, Otsuki T. Reductive alteration of the regulatory function of the CD4(+)CD25(+) T cell fraction in silicosis patients. Int J Immunopathol Pharmacol. 2010;23(4):1099–109. https://doi.org/10.1177/039463201002300414.

    Article  CAS  PubMed  Google Scholar 

  24. Lee S, Matsuzaki H, Kumagai-Takei N, Yoshitome K, Maeda M, Chen Y, Kusaka M, Urakami K, Hayashi H, Fujimoto W, Nishimura Y, Otsuki T. Silica exposure and altered regulation of autoimmunity. Environ Health Prev Med. 2014;19(5):322–9. https://doi.org/10.1007/s12199-014-0403-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Otsuki T, Matsuzaki H, Lee S, Kumagai-Takei N, Yamamoto S, Hatayama T, Yoshitome K, Nishimura Y. Environmental factors and human health: fibrous and particulate substance-induced immunological disorders and construction of a health-promoting living environment. Environ Health Prev Med. 2016;21(2):71–81. https://doi.org/10.1007/s12199-015-0499-6.

    Article  CAS  PubMed  Google Scholar 

  26. Tomokuni A, Aikoh T, Matsuki T, Isozaki Y, Otsuki T, Kita S, Ueki H, Kusaka M, Kishimoto T, Ueki A. Elevated soluble Fas/APO-1 (CD95) levels in silicosis patients without clinical symptoms of autoimmune diseases or malignant tumours. Clin Exp Immunol. 1997;110(2):303–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tomokuni A, Otsuki T, Isozaki Y, Kita S, Ueki H, Kusaka M, Kishimoto T, Ueki A. Serum levels of soluble Fas ligand in patients with silicosis. Clin Exp Immunol. 1999;118(3):441–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hayashi H, Maeda M, Murakami S, Kumagai N, Chen Y, Hatayama T, Katoh M, Miyahara N, Yamamoto S, Yoshida Y, Nishimura Y, Kusaka M, Fujimoto W, Otsuki T. Soluble interleukin-2 receptor as an indicator of immunological disturbance found in silicosis patients. Int J Immunopathol Pharmacol. 2009;22(1):53–62. https://doi.org/10.1177/039463200902200107.

    Article  CAS  PubMed  Google Scholar 

  29. Otsuki T, Sakaguchi H, Tomokuni A, Aikoh T, Matsuki T, Kawakami Y, Kusaka M, Ueki H, Kita S, Ueki A. Soluble Fas mRNA is dominantly expressed in cases with silicosis. Immunology. 1998;94(2):258–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Otsuki T, Miura Y, Nishimura Y, Hyodoh F, Takata A, Kusaka M, Katsuyama H, Tomita M, Ueki A, Kishimoto T. Alterations of Fas and Fas-related molecules in patients with silicosis. Exp Biol Med (Maywood). 2006;231(5):522–33.

    Article  CAS  Google Scholar 

  31. Otsuki T, Tomokuni A, Sakaguchi H, Aikoh T, Matsuki T, Isozaki Y, Hyodoh F, Ueki H, Kusaka M, Kita S, Ueki A. Over-expression of the decoy receptor 3 (DcR3) gene in peripheral blood mononuclear cells (PBMC) derived from silicosis patients. Clin Exp Immunol. 2000;119(2):323–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pitti RM, Marsters SA, Lawrence DA, Roy M, Kischkel FC, Dowd P, Huang A, Donahue CJ, Sherwood SW, Baldwin DT, Godowski PJ, Wood WI, Gurney AL, Hillan KJ, Cohen RL, Goddard AD, Botstein D, Ashkenazi A. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature. 1998;396(6712):699–703. https://doi.org/10.1038/25387.

    Article  CAS  PubMed  Google Scholar 

  33. Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol. 1999;11(2):255–60.

    Article  CAS  PubMed  Google Scholar 

  34. Ueki H, Kohda M, Nobutoh T, Yamaguchi M, Omori K, Miyashita Y, Hashimoto T, Komai A, Tomokuni A, Ueki A. Antidesmoglein autoantibodies in silicosis patients with no bullous diseases. Dermatology. 2001;202(1):16–21. https://doi.org/10.1159/000051578.

    Article  CAS  PubMed  Google Scholar 

  35. Ueki A, Isozaki Y, Tomokuni A, Tanaka S, Otsuki T, Kishimoto T, Kusaka M, Aikoh T, Sakaguchi H, Hydoh F. Autoantibodies detectable in the sera of silicosis patients. The relationship between the anti-topoisomerase I antibody response and HLA-DQB1∗0402 allele in Japanese silicosis patients. Sci Total Environ. 2001;270(1–3):141–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ueki A, Isozaki Y, Tomokuni A, Hatayama T, Ueki H, Kusaka M, Shiwa M, Arikuni H, Takeshita T, Morimoto K. Intramolecular epitope spreading among anti-caspase-8 autoantibodies in patients with silicosis, systemic sclerosis and systemic lupus erythematosus, as well as in healthy individuals. Clin Exp Immunol. 2002;129(3):556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ueki A, Isozaki Y, Kusaka M. Anti-caspase-8 autoantibody response in silicosis patients is associated with HLA-DRB1, DQB1 and DPB1 alleles. J Occup Health. 2005;47(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  38. Takata-Tomokuni A, Ueki A, Shiwa M, Isozaki Y, Hatayama T, Katsuyama H, Hyodoh F, Fujimoto W, Ueki H, Kusaka M, Arikuni H, Otsuki T. Detection, epitope-mapping and function of anti-Fas autoantibody in patients with silicosis. Immunology. 2005;116(1):21–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee S, Hayashi H, Mastuzaki H, Kumagai-Takei N, Otsuki T. Silicosis and autoimmunity. Curr Opin Allergy Clin Immunol. 2017;17(2):78–84. https://doi.org/10.1097/ACI.0000000000000350.

    Article  CAS  PubMed  Google Scholar 

  40. Lee S, Hayashi H, Kumagai-Takei N, Matsuzaki H, Yoshitome K, Nishimura Y, Uragami K, Kusaka M, Yamamoto S, Ikeda M, Hatayama T, Fujimoto W, Otsuki T. Clinical evaluation of CENP-B and Scl-70 autoantibodies in silicosis patients. Exp Ther Med. 2017;13(6):2616–22. https://doi.org/10.3892/etm.2017.4331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee S, Hayashi H, Kumagai-Takei N, Matsuzaki H, Yoshitome K, Sada N, Kusaka M, Uragami K, Nishimura Y. Autoantibodies in silicosis patients: silica-induced dysregulation of autoimmunity. In: Alikhan W, editor. Autoantibodies and cytokines. London (in press): Intech Open Limited.

    Google Scholar 

  42. Kumagai N, Hayashi H, Maeda M, Miura Y, Nishimura Y, Matsuzaki H, Lee S, Fujimoto W, Otsuki T. Immunological effects of silica and related dysregulation of autoimmunity. In: Mavragani CP, editor. Autoimmune disorders - pathogenetic aspects. London: InTech Open Access Publisher; 2011. p. 157–74.

    Google Scholar 

  43. Hayashi H, Nishimura Y, Hyodo F, Maeda M, Kumagai N, Miura Y, Kusaka M, Uragami K, Otsuki T. Dysregulation of autoimmunity caused by silica exposure: fas-mediated apoptosis in t lymphocytes derived from silicosis patients. In: Petro ME, editor. Autoimmune disorders: symptoms, diagnosis and treatment. Hauppauge, NY: Nova Science Publishers; 2011. p. p293–301.

    Google Scholar 

  44. Chen MH, Kan HT, Liu CY, Yu WK, Lee SS, Wang JH, Hsieh SL. Serum decoy receptor 3 is a biomarker for disease severity in nonatopic asthma patients. J Formos Med Assoc. 2017 Jan;116(1):49–56. https://doi.org/10.1016/j.jfma.2016.01.007.

    Article  CAS  PubMed  Google Scholar 

  45. Maeda T, Miura Y, Fukuda K, Hayashi S, Kurosaka M. Decoy receptor 3 regulates the expression of tryptophan hydroxylase 1 in rheumatoid synovial fibroblasts. Mol Med Rep. 2015;12(4):5191–6. https://doi.org/10.3892/mmr.2015.4097.

    Article  CAS  PubMed  Google Scholar 

  46. Liang D, Hou Y, Lou X, Chen H. Decoy receptor 3 improves survival in Experimental sepsis by suppressing the inflammatory response and lymphocyte apoptosis. PLoS One. 2015;10(6):e0131680. https://doi.org/10.1371/journal.pone.0131680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Siakavellas SI, Sfikakis PP, Bamias G. The TL1A/DR3/DcR3 pathway in autoimmune rheumatic diseases. Semin Arthritis Rheum. 2015;45(1):1–8. https://doi.org/10.1016/j.semarthrit.2015.02.007.

    Article  CAS  PubMed  Google Scholar 

  48. Xiu Z, Shen H, Tian Y, Xia L, Lu J. Serum and synovial fluid levels of tumor necrosis factor-like ligand 1A and decoy receptor 3 in rheumatoid arthritis. Cytokine. 2015;72(2):185–9. https://doi.org/10.1016/j.cyto.2014.12.026.

    Article  CAS  PubMed  Google Scholar 

  49. Liu J, Zhao Z, Zou Y, Zhang M, Zhou Y, Li Y, Pang Z, Jin W. The expression of death decoy receptor 3 was increased in the patients with primary Sjögren's syndrome. Clin Rheumatol. 2015;34(5):879–85. https://doi.org/10.1007/s10067-014-2853-2.

    Article  PubMed  Google Scholar 

  50. Chen MH, Liu PC, Chang CW, Chen YA, Chen MH, Liu CY, Leu CM, Lin HY. Decoy receptor 3 suppresses B cell functions and has a negative correlation with disease activity in rheumatoid arthritis. Clin Exp Rheumatol. 2014;32(5):715–23.

    PubMed  Google Scholar 

  51. ILO. Occupational Safety and Health Series No. 22 (Rev. 2011) Guidelines for the use of the ILO International Classification of Radiographs of Pneumoconioses (Revised edition 2011). Geneva: ILO Geneva, International Labour Office; 2011.

    Google Scholar 

  52. Jabłońska S, Błaszczyk M, Jarzabek-Chorzelska M, Chorzelski T, Kołacińska-Strasz Z. Immunological markers of the subsets of systemic scleroderma and its overlap. Arch Immunol Ther Exp. 1991;39(4):381–90.

    Google Scholar 

  53. Harvey GR, McHugh NJ. Serologic abnormalities in systemic sclerosis. Curr Opin Rheumatol. 1999;11(6):495–502.

    Article  CAS  PubMed  Google Scholar 

  54. Dick T, Mierau R, Bartz-Bazzanella P, Alavi M, Stoyanova-Scholz M, Kindler J, Genth E. Coexistence of antitopoisomerase I and anticentromere antibodies in patients with systemic sclerosis. Ann Rheum Dis. 2002;61(2):121–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hamaguchi Y. Autoantibody profiles in systemic sclerosis: predictive value for clinical evaluation and prognosis. J Dermatol. 2010;37(1):42–53. https://doi.org/10.1111/j.1346-8138.2009.00762.x.

    Article  CAS  PubMed  Google Scholar 

  56. Jones RB. Rituximab in the treatment of anti-neutrophil cytoplasm antibody-associated vasculitis. Nephron Clin Pract. 2014;128(3–4):243–9. https://doi.org/10.1159/000368580.

    Article  CAS  PubMed  Google Scholar 

  57. Daikeler T, Kistler AD, Martin PY, Vogt B, Huynh-Do U. The role of rituximab in the treatment of ANCA-associated vasculitides (AAV). Swiss Med Wkly. 2015;145:w14103. https://doi.org/10.4414/smw.2015.14103.

    Article  CAS  PubMed  Google Scholar 

  58. Moog P, Thuermel K. Spotlight on rituximab in the treatment of antineutrophil cytoplasmic antibody-associated vasculitis: current perspectives. Ther Clin Risk Manag. 2015;11:1749–58. https://doi.org/10.2147/TCRM.S79080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Khalil N, Greenberg AH. The role of TGF-beta in pulmonary fibrosis. Ciba Found Symp. 1991;157:194–207.

    CAS  PubMed  Google Scholar 

  60. Branton MH, Kopp JB. TGF-beta and fibrosis. Microbes Infect. 1999;1(15):1349–65.

    Article  CAS  PubMed  Google Scholar 

  61. Ihn H. The role of TGF-beta signaling in the pathogenesis of fibrosis in scleroderma. Arch Immunol Ther Exp. 2002;50(5):325–31.

    CAS  Google Scholar 

  62. Cutroneo KR. TGF-beta-induced fibrosis and SMAD signaling: oligo decoys as natural therapeutics for inhibition of tissue fibrosis and scarring. Wound Repair Regen. 2007;15 Suppl 1:S54–60. https://doi.org/10.1111/j.1524-475X.2007.00226.x.

    Article  PubMed  Google Scholar 

  63. Guillevin L. Rituximab for ANCA-associated vasculitides. Clin Exp Rheumatol. 2014;32(3 Suppl 82):S118–21.

    PubMed  Google Scholar 

Download references

Acknowledgments

All authors thank Ms. Yoko Yoshida for the organization of patient sample collection and former Professor Dr. Ayako Ueki for her establishment of the research projects. Financial support: This study was supported in part by a KAKENHI grant (25460825) from the Japanese Society for the Promotion of Science, and research grants from the Kawasaki Medical School (27B065, 26B16, 24S6, 23S5), Ryobi-Teien (2012), and the Kawasaki Foundation for Medical Science and Medical Welfare (2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takemi Otsuki .

Editor information

Editors and Affiliations

Ethics declarations

All authors declare no competing interests regarding this study.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, S. et al. (2020). Clinical Evaluation of Plasma Decoy Receptor 3 Levels in Silicosis. In: Otsuki, T., Di Gioacchino, M., Petrarca, C. (eds) Allergy and Immunotoxicology in Occupational Health - The Next Step. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-4735-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4735-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4734-8

  • Online ISBN: 978-981-15-4735-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics