Skip to main content

Implementation of Yield Criteria in ABAQUS for Simulations of Deep Drawing: A Review and Preliminary Results

  • Conference paper
  • First Online:
Manufacturing Engineering

Abstract

In the present work, two yield functions, von Mises and Hill’s 1948, are implemented in ABAQUS via UMAT/VUMAT subroutine for deep drawing simulations. The thickness strain distribution during cup deep drawing is predicted and validated with results from ABAQUS simulation with existing yield functions, and existing experiments. The influence of rolling direction and material properties is also studied. It is observed that predictions from von Mises and Hill’s 1948 yield functions agree reasonably well. However, in a direction perpendicular to rolling direction, the error is large indicating the requirement for a better yield criterion for the anisotropic case. The sensitivity of thickness strain distribution with rolling direction, initial sheet thickness, die corner radius, and material properties highlight the importance of anisotropic yield function.

A. Tripathi—Deceased on April 26, 2019.

Dedication.

This article is dedicated to the sweet memory of first author Mr. Arpit Tripathi who left us for his heavenly abode on April 26, 2019.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note: Additional data can be provided on demand

References

Note: Additional data can be provided on demand

  1. Hu, W.: An orthotropic yield criterion in a 3-D general stress state. Int. J. Plasticity. 21, 1771–1796 (2005)

    Article  Google Scholar 

  2. Taherizadeh, A., Green, D.E., Ghaei, A., Yoon, J.W.: A non-associated constitutive model with mixed iso-kinematic hardening for finite element simulation of sheet metal forming. Int. J. Plasticity. 26, 288–309 (2010)

    Article  Google Scholar 

  3. Groover, M.P.: Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, 3rd edn. Wiley (2007)

    Google Scholar 

  4. Kachanov, L.M.: Fundamentals of the Theory of Plasticity. Dover Publications. (2004)

    Google Scholar 

  5. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. 193, 281–297 (1948)

    MathSciNet  MATH  Google Scholar 

  6. Woodthorpe, J., Pearce, R.: The anomalous behaviour of aluminium sheet under balanced biaxial tension. Int. J. Mech. Sci. 12, 341–347 (1970)

    Article  Google Scholar 

  7. Dixit, P.M., Dixit, U.S.: Modeling of Metal Forming and Machining Processes-by Finite Element and Soft Computing Methods. Springer, London (2008)

    Google Scholar 

  8. Banabic, D.: Sheet Metal Forming Processes Constitutive Modeling and Numerical Simulation. Springer, Berlin, Heidelberg (2010)

    Book  Google Scholar 

  9. Vrh, M., Halilovi, M., Starman, B., Štok, B., Comsa, D.S., Banabic, D.: Earing prediction in cup drawing using the BBC2008 yield criterion. In: The 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes. AIP Conference Proceedings 1383, 142–149 (2011)

    Google Scholar 

  10. Barlat, F., Maeda, Y., Chung, K.: Yield function development for aluminum alloy sheets. J. Mech. Phys. Solids 45, 1727–1763 (1997)

    Article  Google Scholar 

  11. Butuc, M.C., Banabic, D., Barata, D.R.A., et al.: The performance of Yld96 and BBC2000 yield functions in forming limit prediction. J. Mater. Process. Technol. 125, 281–286 (2002)

    Article  Google Scholar 

  12. Banabic D., Comsa D.S., Balan T.: A new yield criterion for orthotropic sheet metals under plane-stress condition. In: Proceedings of the Cold Metal Forming Conference. Cluj-Napoca, p. 217 (2000)

    Google Scholar 

  13. Moreira, L.P., Ferron, G., Ferran, G.: Experimental and numerical analysis of the cup drawing test for orthotropic metal sheets. J. Mater. Process. Technol. 108, 78–86 (2000)

    Article  Google Scholar 

  14. Guner, A., Soyarslan, C., Brosius, A., Tekkaya, A.E.: Characterization of anisotropy of sheet metals employing inhomogeneous strain fields for Yld 2000–2D yield function. Int. J. Solids and Structures 49, 3517–3527 (2012)

    Article  Google Scholar 

  15. Banabic, D., Kuwabara, T., Balan, T., Comsa, D.S., Julean, D.: Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions. Int. J. Mech. Sci. 45, 797–811 (2003)

    Article  Google Scholar 

  16. Laurent, H., Greze, R., Manach, P.Y., Thuillier, S.: Influence of constitutive model in springback prediction using the split-ring test. Int. J. Mech. Sci. 51, 233–245 (2009)

    Article  Google Scholar 

  17. Barlat, F., Lege, D.J., Brem, J.C.: A six-component yield function for anisotropic materials. Int. J. Plasticity 7, 693–712 (1991)

    Article  Google Scholar 

  18. Eggertsen, P.A., Mattiasson, K.: On constitutive modeling for springback analysis. Int. J. Mech. Sci. 52, 804–818 (2010)

    Article  Google Scholar 

  19. Soare, S., Yoon, J.W., Cazacu, O.: On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming. Int. J. Plasticity 24, 915–944 (2008)

    Article  Google Scholar 

  20. Yoon, J.W., Hong, S.H.: Modeling of aluminum alloy sheets based on new anisotropic yield function. J. Mater. Process. Technol. 177, 134–137 (2006)

    Article  Google Scholar 

  21. Aretz, H.: A non-quadratic plane stress yield function for orthotropic sheet metals. J. Mater. Process. Technol. 168, 1–9 (2005)

    Article  Google Scholar 

  22. Xu, L., Barlat, F., Ahn, D.C.: Constitutive modelling of ferritic stainless steel sheets. Int. J. Mater. Form. 2, Springer/ESAFORM (2009)

    Google Scholar 

  23. Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., Dick, R.E.: Linear transformation based anisotropic yield functions. Int. J. Plasticity 21, 1009–1039 (2005)

    Article  Google Scholar 

  24. Karafillis, A.P., Boyce, M.C.: A general anisotropic yield criterion using bounds and a transformation weighting tensor. J. Mech. Phys. Solids 41, 1859–1886 (1993)

    Article  Google Scholar 

  25. Banabic, D., Kuwabara, T., Balan, T., Comsa, D.S.: An anisotropic yield criterion for sheet metals. J. Mater. Process. Technol. 157, 462–465 (2004)

    Article  Google Scholar 

  26. Kuwabara, T., Ikeda, S., Kuroda, K.: Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension. J. Mater. Process. Technol. 80(8), 517–523 (1998)

    Article  Google Scholar 

  27. Kuwabara, T., Bael, A.V.: Measurement and analysis of yield locus of sheet aluminum alloy 6XXX. In: Proceedings of the Fourth International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, Besanc, pp. 85–90 (1999)

    Google Scholar 

  28. Mattiasson, K., Sigvant, M.: An evaluation of some recent yield criteria for industrial simulations of sheet forming processes. Int. J. Mech. Sci. 50, 774–787 (2008)

    Article  Google Scholar 

  29. Barlat, F., Yoon, J.W., Cazacu, O.: On linear transformations of stress tensors for the description of plastic anisotropy. Int. J. Plasticity 23, 876–896 (2007)

    Article  Google Scholar 

  30. Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Choi, S.H., Pourboghrat, F., Chu, E., Lege, D.J.: Plane stress yield function for aluminum alloy sheets. Int. J. Plasticity 19, 1297–1319 (2003)

    Article  Google Scholar 

  31. Barlat, F., Lian, J.: Plastic behavior and stretchability of sheet metals, part I: a yield function for orthotropic sheets under plane stress conditions. Int. J. Plasticity 5, 51–66 (1989)

    Article  Google Scholar 

  32. Wu, H.C.: Anisotropic plasticity for sheet metals using the concept of combined isotropic-kinematic. Int. J. Plasticity. 18, 1661–1682 (2002)

    Article  Google Scholar 

  33. Dasappa, P., Inal, K., Mishra, R.: The effects of anisotropic yield functions and their material parameters on prediction of forming limit diagrams. Int. J. Solids and Structures 49, 3528–3550 (2012)

    Article  Google Scholar 

  34. Hill, R.: Constitutive modelling of orthotropic plasticity in sheet metals. J. Mech. Phys. Solids 38, 405–417 (1990)

    Article  MathSciNet  Google Scholar 

  35. Hill, R.: A user-friendly theory of orthotropic plasticity in sheet metals. Int. J. Mech. Sci. 35, 19–25 (1993)

    Article  Google Scholar 

  36. Plunkett, B., Cazacu, O., Barlat, F.: Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals. Int. J. Plasticity 24, 847–866 (2008)

    Article  Google Scholar 

  37. Marciniak, Z., Kuczynski, K.: Limit strains in the processes of stretch-forming sheet metal. Int. J. Mech. Sci. 9, 609–620 (1967)

    Article  Google Scholar 

  38. Choi, Y.: Modeling evolution of anisotropy and hardening for sheet metals. Ph.D. thesis. The Ohio State University (2003)

    Google Scholar 

  39. Yoon, J.W., Barlat, F., Chung, K., Pourboghrat, F., Yang, D.Y.: Earing predictions based on asymmetric nonquadratic yield function. Int. J. Plast 9, 1075–1104 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ganesh Narayanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tripathi, A., Ganesh Narayanan, R., Dixit, U.S. (2020). Implementation of Yield Criteria in ABAQUS for Simulations of Deep Drawing: A Review and Preliminary Results. In: Sharma, V., Dixit, U., Sørby, K., Bhardwaj, A., Trehan, R. (eds) Manufacturing Engineering . Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4619-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4619-8_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4618-1

  • Online ISBN: 978-981-15-4619-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics